Scratch Assay Image Analysis Automation

Date

2022

Type:

Article

item.page.extent

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

In this brief proof-of-concept paper, we present an algorithm developed in Python to automate the analysis of images obtained in scratch assays. Our algorithm uses random forest, a classic machine learning technique, to train and segment scratch assay images. This enables an average time reduction of 84% on the analysis of the images, together with a procedure with replicable results.

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Urrejola-Barrios, S., del Campo-Smith, M., Duran, E., Asahi, T., Opitz, D., & Lobos-Gonzalez, L. Scratch Assay Image Analysis Automation. Abstract Track 26th MIUA conference University of Cambridge, UK., 106–109 (2022)

Keywords

Machine learning, Medical images & software solution

item.page.dc.rights

item.page.dc.rights.url