Scratch Assay Image Analysis Automation

dc.contributor.authorUrrejola-Barrios, Sebastián
dc.contributor.authorDel Campo-Smith, Matías
dc.contributor.authorDurán, Eduardo
dc.contributor.authorAsahi, Takeshi
dc.contributor.authorOpitz, Daniela
dc.contributor.authorLobos-González, Lorena
dc.date.accessioned2023-02-21T17:03:46Z
dc.date.available2023-02-21T17:03:46Z
dc.date.issued2022
dc.description.abstractIn this brief proof-of-concept paper, we present an algorithm developed in Python to automate the analysis of images obtained in scratch assays. Our algorithm uses random forest, a classic machine learning technique, to train and segment scratch assay images. This enables an average time reduction of 84% on the analysis of the images, together with a procedure with replicable results.
dc.description.versionVersión aceptada
dc.identifier.citationUrrejola-Barrios, S., del Campo-Smith, M., Duran, E., Asahi, T., Opitz, D., & Lobos-Gonzalez, L. Scratch Assay Image Analysis Automation. Abstract Track 26th MIUA conference University of Cambridge, UK., 106–109 (2022)
dc.identifier.urihttps://repositorio.udd.cl/handle/11447/7028
dc.language.isoen
dc.subjectMachine learning
dc.subjectMedical images & software solution
dc.titleScratch Assay Image Analysis Automation
dc.typeArticle
dcterms.sourceThe 26th Medical Image Understanding and Analysis (MIUA) conference’s abstract track

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Scratch Assay Image Analysis Automation - SUrrejola.pdf
Size:
653.49 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: