Scratch Assay Image Analysis Automation
Date
2022
Type:
Article
item.page.extent
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
In this brief proof-of-concept paper, we present an algorithm developed in Python to automate the analysis of images obtained in scratch assays. Our algorithm uses random forest, a classic machine learning technique, to train and segment scratch assay images. This enables an average time reduction of 84% on the analysis of the images, together with a procedure with replicable results.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Urrejola-Barrios, S., del Campo-Smith, M., Duran, E., Asahi, T., Opitz, D., & Lobos-Gonzalez, L. Scratch Assay Image Analysis Automation. Abstract Track 26th MIUA conference University of Cambridge, UK., 106–109 (2022)
Keywords
Machine learning, Medical images & software solution