Jensen-type inequalities for m-convex functions
dc.contributor.author | Bosch, Paul | |
dc.contributor.author | Quintana, Yamilet | |
dc.contributor.author | Rodríguez, José M. | |
dc.contributor.author | Sigarreta, José M. | |
dc.date.accessioned | 2023-04-20T20:58:53Z | |
dc.date.available | 2023-04-20T20:58:53Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Inequalities play an important role in pure and applied mathematics. In particular, Jensen’s inequality, one of the most famous inequalities, plays the main role in the study of the existence and uniqueness of initial and boundary value problems for differential equations. In this work, we prove some new Jensen-type inequalities for m-convex functions and apply them to generalized Riemann-Liouvilletype integral operators. Furthermore, as a remarkable consequence, some new inequalities for convex functions are obtained. | |
dc.description.version | Versión publicada | |
dc.format.extent | 13 p. | |
dc.identifier.citation | Bosch, Paul, Quintana, Yamilet, Rodríguez, José M. and Sigarreta, José M.. "Jensen-type inequalities for m-convex functions" Open Mathematics, vol. 20, no. 1, 2022, pp. 946-958. https://doi.org/10.1515/math-2022-0061 | |
dc.identifier.doi | https://doi.org/10.1515/math-2022-0061 | |
dc.identifier.uri | https://repositorio.udd.cl/handle/11447/7361 | |
dc.language.iso | en | |
dc.subject | Jensen-type inequalities | |
dc.subject | Convex functions | |
dc.subject | M-convex functions | |
dc.subject | Fractional derivatives and integrals | |
dc.subject | Fractional integral inequalities | |
dc.title | Jensen-type inequalities for m-convex functions | |
dc.type | Article | |
dcterms.accessRights | Acceso abierto | |
dcterms.source | Open Mathematics |