Jensen-type inequalities for m-convex functions
Date
2022
Type:
Article
item.page.extent
13 p.
item.page.accessRights
Acceso abierto
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
Inequalities play an important role in pure and applied mathematics. In particular, Jensen’s inequality, one of the most famous inequalities, plays the main role in the study of the existence and uniqueness of initial and boundary value problems for differential equations. In this work, we prove some new Jensen-type inequalities for m-convex functions and apply them to generalized Riemann-Liouvilletype integral operators. Furthermore, as a remarkable consequence, some new inequalities for convex functions are obtained.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Bosch, Paul, Quintana, Yamilet, Rodríguez, José M. and Sigarreta, José M.. "Jensen-type inequalities for m-convex functions" Open Mathematics, vol. 20, no. 1, 2022, pp. 946-958. https://doi.org/10.1515/math-2022-0061
Keywords
Jensen-type inequalities, Convex functions, M-convex functions, Fractional derivatives and integrals, Fractional integral inequalities