Seismic response of retaining walls with cohesive backfill: Centrifuge model studies
Date
2016
Type:
Artículo
item.page.extent
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
Observations from recent earthquakes show that retaining structures with non-liquefiable backfills perform extremely well; in fact, damage or failures related to seismic earth pressures are rare. The seismic response of a 6-m-high braced basement and a 6-m free-standing cantilever wall retaining a compacted low plasticity clay was studied in a series of centrifuge tests. The models were built at a 1/36 scale and instrumented with accelerometers, strain gages and pressure sensors to monitor their response. The experimental data show that the seismic earth pressure on walls increases linearly with the free-field PGA and that the earth pressures increase approximately linearly with depth, where the resultant acts near 0.33 H above the footing as opposed to 0.5-0.6 H, which is suggested by most current design methods. The current data suggest that traditional limit equilibrium methods yield overly conservative earth pressures in areas with ground accelerations up to 0.4g. (C) 2016 Elsevier Ltd. All rights reserved.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Soil Dynamics and Earthquake Engineering, 2016, vol. 90, p. 411-419
Keywords
Centrifuge tests, Retaining walls, Seismic earth pressures, Mononobe-Okabe