dc.contributor.author |
Bosch, Paul |
|
dc.contributor.author |
Carmenate García, Héctor José |
|
dc.contributor.author |
Rodríguez, José Manuel |
|
dc.contributor.author |
Sigarreta, José María |
|
dc.date.accessioned |
2021-11-30T15:17:50Z |
|
dc.date.available |
2021-11-30T15:17:50Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Bosch, P.; Carmenate García, H.J.; Rodríguez, J.M.; Sigarreta, J.M. On the Generalized Laplace Transform. Symmetry 2021, 13, 669. https://doi.org/10.3390/ sym13040669 |
es |
dc.identifier.uri |
https://doi.org/10.3390/sym13040669 |
es |
dc.identifier.uri |
http://hdl.handle.net/11447/5139 |
|
dc.description.abstract |
In this paper we introduce a generalized Laplace transform in order to work with a very
general fractional derivative, and we obtain the properties of this new transform. We also include the corresponding convolution and inverse formula. In particular, the definition of convolution for this generalized Laplace transform improves previous results. Additionally, we deal with the generalized harmonic oscillator equation, showing that this transform and its properties allow one to solve fractional differential equations. |
es |
dc.language.iso |
en |
es |
dc.subject |
Fractional derivative |
es |
dc.subject |
Convolution |
es |
dc.subject |
Generalized Laplace transform |
es |
dc.title |
On the Generalized Laplace Transform |
es |
dc.type |
Article |
es |
dcterms.source |
Symmetry |
es |