On the Generalized Laplace Transform

dc.contributor.authorBosch, Paul
dc.contributor.authorCarmenate García, Héctor José
dc.contributor.authorRodríguez, José Manuel
dc.contributor.authorSigarreta, José María
dc.date.accessioned2021-11-30T15:17:50Z
dc.date.available2021-11-30T15:17:50Z
dc.date.issued2021
dc.description.abstractIn this paper we introduce a generalized Laplace transform in order to work with a very general fractional derivative, and we obtain the properties of this new transform. We also include the corresponding convolution and inverse formula. In particular, the definition of convolution for this generalized Laplace transform improves previous results. Additionally, we deal with the generalized harmonic oscillator equation, showing that this transform and its properties allow one to solve fractional differential equations.es
dc.identifier.citationBosch, P.; Carmenate García, H.J.; Rodríguez, J.M.; Sigarreta, J.M. On the Generalized Laplace Transform. Symmetry 2021, 13, 669. https://doi.org/10.3390/ sym13040669es
dc.identifier.urihttps://doi.org/10.3390/sym13040669es
dc.identifier.urihttp://hdl.handle.net/11447/5139
dc.language.isoenes
dc.subjectFractional derivativees
dc.subjectConvolutiones
dc.subjectGeneralized Laplace transformes
dc.titleOn the Generalized Laplace Transformes
dc.typeArticlees
dcterms.sourceSymmetryes

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
On the generalized Laplace transform PBOSCH.pdf
Size:
277.87 KB
Format:
Adobe Portable Document Format
Description:
Texto completo restringido
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: