A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters
No hay miniatura disponible
Fecha
2021
Autores
López-Ospina, Héctor
Cortés, Cristián E.
Pérez, Juan
Peña, Romario
Figueroa-García, Juan Carlos
Urrutia Mosquera, Jorge
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
We formulate a bi-objective distribution model for urban trips constrained by origins and destinations while maximizing entropy. We develop a flexible and consistent approach in which the estimations of generated/attracted parameters are fuzzy with entropic membership functions. Based on a fuzzy-entropy approach, we measure the uncertainty associated with fuzzy variables. We solve the problem by means of compromise programming considering a weighted sum objective function. We compute and extend concepts such as accessibility, attractiveness, and generalized cost, typically obtained in transport economic analyzes. Considering that our formulation is convex, we solve the problem in one step only, maintaining the uniqueness of the the optimization problem solution. We present two numerical examples to illustrate the proposed methodology, analyzing the impact of the results based on strong mathematical and statistical arguments. Finally, we show that our approach has better prediction capabilities than traditional fuzzy models regarding aggregated indicators and structural distribution patterns.
Descripción
Palabras clave
Entropy optimization , Origin-destination trip matrix , Transport distribution , Fuzzy sets , Fuzzy entropy
Citación
Héctor López-Ospina, Cristián E. Cortés, Juan Pérez, Romario Peña, Juan Carlos Figueroa-García & Jorge Urrutia-Mosquera (2021): A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters, Transportmetrica A: Transport Science, DOI: 10.1080/23249935.2021.1913257