Publication:
Some new Milne-type inequalities

dc.contributor.authorBosch, Paul
dc.contributor.authorRodríguez, José M.
dc.contributor.authorSigarreta, José M.
dc.contributor.authorTourís, Eva
dc.date.accessioned2025-01-29T20:24:01Z
dc.date.available2025-01-29T20:24:01Z
dc.date.issued2024
dc.description.abstractInequalities play a main role in pure and applied mathematics. In this paper, we prove a generalization of Milne inequality for any measure space. The argument in the proof of this inequality allows us to obtain other Milne-type inequalities. Also, we improve the discrete version of Milne inequality, which holds for any positive value of the parameter p. Finally, we present a Milne-type inequality in the fractional context.
dc.description.versionVersión publicada
dc.format.extent14 p.
dc.identifier.citationBosch, P., Rodríguez, J.M., Sigarreta, J.M. et al. Some new Milne-type inequalities. J Inequal Appl 2024, 106 (2024). https://doi.org/10.1186/s13660-024-03184-4
dc.identifier.doihttps://doi.org/10.1186/s13660-024-03184-4
dc.identifier.urihttps://hdl.handle.net/11447/9748
dc.language.isoen
dc.subjectMilne-type inequalities
dc.subjectDiscrete Milne’s inequality
dc.subjectFractional integral inequalitie
dc.titleSome new Milne-type inequalities
dc.typeArticle
dcterms.accessRightsAcceso abierto
dcterms.sourceJournal of Inequalities and Applications
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13660-024-03184-4.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
347 B
Format:
Item-specific license agreed upon to submission
Description: