Browsing by Author "Berríos, Pablo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Novel Morphine Drinking Model of Opioid Dependence in Rats(2022) Berríos, Pablo; Quezada, Mauricio; Santapau, Daniela; Morales, Paola; Olivares, Belén; Ponce, Carolina; Ávila, Alba; De Gregorio, Cristian; Ezquer, Marcelo; Quintanilla, María; Herrera, Mario; Israel, Yedy; Ezquer, FernandoAbstract: An animal model of voluntary oral morphine consumption would allow for a pre-clinical evaluation of new treatments aimed at reducing opioid intake in humans. However, the main limitation of oral morphine consumption in rodents is its bitter taste, which is strongly aversive. Taste aversion is often overcome by the use of adulterants, such as sweeteners, to conceal morphine taste or bitterants in the alternative bottle to equalize aversion. However, the adulterants’ presence is the cause for consumption choice and, upon removal, the preference for morphine is not preserved. Thus, current animal models are not suitable to study treatments aimed at reducing consumption elicited by morphine itself. Since taste preference is a learned behavior, just-weaned rats were trained to accept a bitter taste, adding the bitterant quinine to their drinking water for one week. The latter was followed by allowing the choice of quinine or morphine (0.15 mg/mL) solutions for two weeks. Then, quinine was removed, and the preference for morphine against water was evaluated. Using this paradigm, we show that rats highly preferred the consumption of morphine over water, reaching a voluntary morphine intake of 15 mg/kg/day. Morphine consumption led to significant analgesia and hyperlocomotion, and to a marked deprivation syndrome following the administration of the opioid antagonist naloxone. Voluntary morphine consumption was also shown to generate brain oxidative stress and neuroinflammation, signs associated with opioid dependence development. We present a robust two-bottle choice animal model of oral morphine self-administration for the evaluation of therapeutic interventions for the treatment of morphine dependence.Publication Amelioration of morphine withdrawal syndrome by systemic and intranasal administration of mesenchymal stem cell-derived secretome in preclinical models of morphine dependence(2023) Ezquer, Marcelo; Gallardo, Javiera; Quezada, Mauricio; Ponce, Carolina; Berríos, Pablo; Santapau, Daniela; De Gregorio, Cristian; Quintanilla, María; Morales, Paola; Herreraz, Mario; Israel, Yedy; Andrés, Paula; Hipólito, Lucia; Ezquer, FernandoBackground: Morphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine-induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti-inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress. Methods: Two animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC-derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini-pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC-derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC-derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation. Results: In both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine-induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens. Conclusion: Data presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.Item Effect of human mesenchymal stem cell secretome administration on morphine self-administration and relapse in two animal models of opioid dependence(2022) Quintanilla, María Elena; Quezada, Mauricio; Morales, Paola; Berríos, Pablo; Santapau, Daniela; Ezquer, Marcelo; Herrera, Mario; Israel, Yedy; Ezquer, FernandoThe present study investigates the possible therapeutic effects of human mesenchymal stem cell-derived secretome on morphine dependence and relapse. This was studied in a new model of chronic voluntary morphine intake in Wistar rats which shows classic signs of morphine intoxication and a severe naloxone-induced withdrawal syndrome. A single intranasal-systemic administration of MSCs secretome fully inhibited (>95%; p < 0.001) voluntary morphine intake and reduced the post-deprivation relapse intake by 50% (p < 0.02). Since several studies suggest a significant genetic contribution to the chronic use of many addictive drugs, the effect of MSCs secretome on morphine self-administration was further studied in rats bred as high alcohol consumers (UChB rats). Sub-chronic intraperitoneal administration of morphine before access to increasing concentrations of morphine solutions and water were available to the animals, led UChB rats to prefer ingesting morphine solutions over water, attaining levels of oral morphine intake in the range of those in the Wistar model. Intranasally administered MSCs secretome to UChB rats dose-dependently inhibited morphine self-administration by 72% (p < 0.001); while a single intranasal dose of MSC-secretome administered during a morphine deprivation period imposed on chronic morphine consumer UChB rats inhibited re-access morphine relapse intake by 80 to 85% (p < 0.0001). Both in the Wistar and the UChB rat models, MSCs-secretome administration reversed the morphine-induced increases in brain oxidative stress and neuroinflammation, considered as key engines perpetuating drug relapse. Overall, present preclinical studies suggest that products secreted by human mesenchymal stem cells may be of value in the treatment of opioid addiction.Publication Reduction of nicotine and ethanol intake in alcohol-preferring (UChB) female rats by the α4β2 nicotinic acetylcholine receptor partial agonists 5-bromocytisine and cytisine(2023) Quintanilla, María; Rivera, Mario; Berríos, Pablo; Cassels, BruceRationale: Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of nicotine and ethanol. Previous studies have shown that cytisine and its 5-bromo derivative are partial agonists at the α4β2 nAChRs and that the parent molecule cytisine is effective in reducing both nicotine- and ethanol-self-administration in rats. However, whether 5-bromocytisine affects nicotine or ethanol self-administration was unknown. Objectives: The present study compared the effects of 5-bromocytisine and cytisine on nicotine self-administration and further assessed the effect of daily drug injection on voluntary ethanol consumption in alcohol-preferring female rats. Animals were administered a 1.5mg/kg i.p. dose of 5-bromocytisine or cytisine every day for 15-16 days. Results: The initial efficacy of 5-bromocytisine and cytisine in reducing nicotine intake was similar (-80%) while for voluntary ethanol intake 5-bromocytisine was a superior inhibitor over cytisine (-78% and -40% respectively). The efficacy of cytisine began to diminish after 10 days of daily administration, which was attributed to tolerance development to its inhibitory effects both on nicotine and ethanol self-administration. Tolerance did not develop for 5-bromocytisine. Conclusion: 5-Bromocytisine, a weaker α4β2 nAChR partial agonist than cytisine, also produces a sustained inhibition of both nicotine and ethanol self-administration, and unlike cytisine, it does not develop tolerance.