A New Genetic Algorithm Encoding for Coalition Structure Generation Problems
Date
2020
Type:
Article
item.page.extent
13 p.
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
Genetic algorithms have proved to be a useful improvement heuristic for tackling several combinatorial problems, including the coalition structure generation problem. In this case, the focus lies on selecting the best partition from a discrete set. A relevant issue when designing a Genetic algorithm for coalition structure generation problems is to choose a proper genetic encoding that enables an efficient computational implementation. In this paper, we present a novel hybrid encoding, and we compare its performance against several genetic encoding proposed in the literature. We show that even in difficult instances of the coalition structure generation problem, the proposed approach is a competitive alternative to obtaining good quality solutions in reasonable computing times. Furthermore, we also show that the encoding relevance increases as the number of players increases.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Mathematical Problems in Engineering, vol.2020, Article ID 1203248
Keywords
Genetic algorithms, Encoding