Fast and Compact Planar Embeddings

Date

2019

Type:

Article

item.page.extent

36 p.

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

There are many representations of planar graphs, but few are as elegant as Turán’s (1984): it is simple and practical, uses only 4 bits per edge, can handle self-loops and multi-edges, and can store any specified embedding. Its main disadvantage has been that “it does not allow efficient searching” (Jacobson, 1989). In this paper we show how to add a sublinear number of bits to Turán’s representation such that it supports fast navigation while retaining simplicity. As a consequence of the inherited simplicity, we offer the first efficient parallel construction of a compact encoding of a planar graph embedding. Our experimental results show that the resulting representation uses about 6 bits per edge in practice, supports basic navigation operations within a few microseconds, and can be built sequentially at a rate below 1 microsecond per edge, featuring a linear speedup with a parallel efficiency around 50% for large datasets.

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Computational Geometry Volume 89, August 2020

Keywords

Planar embedding, Compact data structures, Parallel construction

item.page.dc.rights

item.page.dc.rights.url