Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras

dc.contributor.authorBeltran, Jarnishs
dc.contributor.authorFarinati, Marco
dc.contributor.authorReyes, Enrique G.
dc.date.accessioned2018-02-22T21:03:09Z
dc.date.available2018-02-22T21:03:09Z
dc.date.issued2017
dc.description.abstractWe describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology group HH1(Ψn) is 2n-dimensional and we use this fact to calculate the first Lie (co)homology group HLie1(Ψn) of Ψn equipped with the Lie bracket induced by its associative algebra structure. As an application, we use our calculations to provide examples of infinite-dimensional quadratic symplectic Lie algebras.
dc.format.extentAvailable online
dc.identifier.citationJournal of Pure and Applied Algebra Available online 8 August 2017
dc.identifier.urihttp://hdl.handle.net/11447/1994
dc.identifier.urihttps://doi.org/10.1016/j.jpaa.2017.08.017Get rights and content
dc.language.isoen_US
dc.titleCentral extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
dc.typeArtículo

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Central extensions of the algebra of formal pseudo.pdf
Size:
66.59 KB
Format:
Adobe Portable Document Format
Description:
Referencia y resumen