Modularity along organism dispersal gradients challenges a prevailing view of abrupt transitions in animal landscape perception

dc.contributor.authorBorthagaray, Ana Inés
dc.contributor.authorBarreneche, Juan Manuel
dc.contributor.authorAbades, Sebastián
dc.contributor.authorArim, Matías
dc.date.accessioned2016-01-25T11:36:33Z
dc.date.available2016-01-25T11:36:33Z
dc.date.issued2014
dc.description.abstractA common property of landscapes and metacommunities is the occurrence of abrupt shifts in connectivity along gradients of individual dispersal abilities. Animals with short-range dispersal capability perceive fragmented landscapes, but organisms moving across critical thresholds perceive continuous landscapes. This qualitative shift in landscape perception may determine several attributes of local communities and the dynamics of whole metacommunities. Modularity describes the existence in some communities of relatively high numbers of mutual connections favoring the movement of neighboring individuals (even when each individual is able to reach any patch in the landscape). Local patch linkages and metacommunity connectivity along gradients of dispersal ability have been reported frequently. However, the intermediate level of structure captured by modularity has not been considered. We evaluated landscape connectivity and modularity along gradients of individual dispersal abilities. Random landscapes with different degrees of cell aggregation and occupancy were simulated; we also analyzed ten real ecosystems. An expected, a shift in landscape connectivity was always detected; modularity consistently decreased gradually along dispersal gradients in both simulated networks and empirical landscapes. Neutral metacommunities within simulated landscapes demonstrated that modularity and connectivity may reflect landscape traits in the shaping of metacommunity diversity. Average beta-diversity was strongly associated with modularity, particularly with low migration rates, while connectivity trends tracked changes in betadiversity at intermediate to high migrations rates. Consequently, while some species are able to perceive abrupt transitions in the landscape, many others probably experience a gradual continuum in landscape perception, contrary to predictions from previous analyses. Furthermore, the gradual behavior of modularity indicates that it may represent an exceptional early-warning tool that measures system distance to tipping points. Our study highlights the multiple perceptions that different species may have of a single landscape and shows, for the first time, a theoretical and empirical relationship between landscape modularity, and metacommunity diversity
dc.identifier.citationEcography, 2014, 37 (6): 564–571
dc.identifier.urihttp://hdl.handle.net/11447/197
dc.identifier.urihttp://dx.doi.org/10.1111/j.1600-0587.2013.00366.x
dc.language.isoen_US
dc.subjectAnimal
dc.subjectPerception
dc.subjectLandscape
dc.titleModularity along organism dispersal gradients challenges a prevailing view of abrupt transitions in animal landscape perception
dc.typeArtículo

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modularity along organism dispersal gradients challenges a prevailing view of abrupt transitions in animal landscape perception.pdf
Size:
744.3 KB
Format:
Adobe Portable Document Format
Description:
Texto completo