Parallel construction of wavelet trees on multicore architectures

Date

01/06/2017

Type:

ArtĂ­culo

item.page.extent

23 p.

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

The wavelet tree has become a very useful data structure to efficiently represent and query large volumes of data in many different domains, from bioinformatics to geographic information systems. One problem with wavelet trees is their construction time. In this paper, we introduce two algorithms that reduce the time complexity of a wavelet tree's construction by taking advantage of nowadays ubiquitous multicore machines. Our first algorithm constructs all the levels of the wavelet in parallel with O(n) time and bits of working space, where n is the size of the input sequence and is the size of the alphabet. Our second algorithm constructs the wavelet tree in a domain decomposition fashion, using our first algorithm in each segment, reaching time and bits of extra space, where p is the number of available cores. Both algorithms are practical and report good speedup for large real datasets.

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Fuentes-SepĂșlveda, J., Elejalde, E., Ferres, L. et al. Parallel construction of wavelet trees on multicore architectures. Knowl Inf Syst 51, 1043–1066 (2017). https://doi.org/10.1007/s10115-016-1000-6

Keywords

Succinct data structure, Wavelet tree construction, Multicore, Parallel algorithm

item.page.dc.rights

item.page.dc.rights.url