A subject-independent pattern-based Brain-Computer Interface
Date
2015
Type:
Artículo
item.page.extent
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to "match" their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Ray AM, Sitaram R, Rana M, Pasqualotto E, Buyukturkoglu K, Guan C, Ang KK, Tejos C, Zamorano F, Aboitiz F, Birbaumer N, Ruiz S. A subject-independent pattern-based Brain-Computer Interface. Front Behav Neurosci. 2015 Oct 20;9:269
Keywords
neurofeedback, BCI, subject-independent classification, emotion imagery, common spatial patterns