Análisis comparativo sobre indicadores de movilidad para la zona central de Chile durante la pandemia: Exploración de diferencias entre grupos socioeconómicos y propuesta de modelo predictivo (SVR) para el índice de movilidad interno

Date

2023

Type:

Thesis

item.page.extent

33 p.

item.page.accessRights

Acceso abierto

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad del Desarrollo. Facultad de Ingeniería

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

La presente investigación intenta aportar al entendimiento de la inercia de movilidad de la población, especialmente ante situaciones de alta complejidad como lo fue la pandemia de COVID – 19 y las medidas no farmacológicas que se aplicaron en Chile para restringir el libre desplazamiento. Para este análisis, se utilizaron datos detallados de los Índices de Movilidad (IM) construidos por Instituto Data Science de la UDD, y facilitados al Ministerio de Ciencia, los cuales se encuentran desglosados en índices internos (referentes a viajes dentro de la comuna) e índices externos (considerando desplazamientos entre comunas), así como la sumatoria de ambos como un indicador de movilidad total (IM). Uno de los resultados más significativos de esta investigación es la correlación negativa entre el índice de Movilidad interno y los niveles socioeconómicos de las comunas. Este hallazgo sugiere que factores como el ingreso y la situación económica local desempeñan un papel crucial en la configuración de los patrones de movilidad. Esta comprensión pudiese ser fundamental a la hora de diseñar estrategias de manejo de la movilidad que sean efectivas, equitativas y sensibles a las disparidades socioeconómicas. También, se desarrolla un modelo predictivo utilizando Regresión de Vectores de Soporte (SVR), que pretende ser una herramienta eficaz para predecir el índice de movilidad interno (IM_interno). El modelo se entrena con datos de comunas en la zona central de Chile, utilizando variables clave como la densidad poblacional (población/superficie en Km2) y el porcentaje de pobreza. El modelo destaca la importancia de considerar estas variables en la formulación de políticas de gestión de la movilidad. En conclusión, este estudio intenta ofrecer una visión más completa y contextualizada de la movilidad durante los tiempos de cuarentena, integrando datos cuantitativos y comprensión cualitativa de los factores subyacentes, especialmente el porcentaje de población en situación de pobreza.

Description

Proyecto de grado presentado a la Facultad de Ingeniería de la Universidad del Desarrollo para optar al grado académico de Magíster en Data Science

item.page.coverage.spatial

Santiago

item.page.sponsorship

Citation

Keywords

Movilidad, Pandemia, Chile, 070037S

item.page.dc.rights

item.page.dc.rights.url