Clasificación y predicción de tipos de árboles en la reserva Roosevelt usando datos cartográficos

Date

2022-01

Type:

Thesis

item.page.extent

48 p.

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad del Desarrollo. Facultad de Ingeniería

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

Debido a las restricciones en reservas naturales es complejo realizar el estudio de estas. En este trabajo presentamos distintos modelos de machine learning para predecir el tipo de cobertura de ´arbol utilizando el dataset Forest Cover Type, de la Roosevelt National Forest en Colorado. Este set de datos contiene 581.012 observaciones, 54 atributos con informaci´on cartogr´afica y 7 categor´ıas de ´arboles a predecir, cada instancia corresponde a un ´area de 30x30m donde la categor´ıa tenga predominancia. Para realizar las predicciones se utilizaron dos modelos de machine learning: Random Forest y LightGBM, Se experiment´o utilizando la funci´on de p´erdida Focal Loss y adicionando informaci´on sint´etica de las categor´ıas minoritarias utilizando redes CTGAN. Con este ´ultimo enfoque se alcanz´o un valor para la m´etrica F1 de 0.943 y accuracy de 0.966. Un an´alisis de la interpretabilidad del modelo revel´o uno de los atributos m´as importantes para predecir la cobertura de arboles es la Elevaci´on, Distancia horizontal a carreteras y Distancia horizontal a puntos de incendios

Description

Proyecto de Grado presentado a la Facultad de Ingeniería de la Universidad del Desarrollo para optar al grado académico de Magıster en Data Science

item.page.coverage.spatial

item.page.sponsorship

Citation

Keywords

Áreas protegidas, Conservación, Censo forestal, Metodologías, 070037S

item.page.dc.rights

item.page.dc.rights.url