Considering Section Balance in an Integer Optimization Model for the Curriculum-Based Course Timetabling Problem

Date

2020-10

Type:

Article

item.page.extent

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

University course timetabling is a complex and time-consuming duty that every educational institution faces regularly. It consists of scheduling a set of lectures in predefined time slots so as to avoid student conflicts, meet teacher and room availability, and manage several institution-specific operational rules. In this paper, we schedule courses based on a curriculum, that is, before the students’ registration. Unlike other curriculum-based models, the proposed model considers two practical aspects when managing the conflicts between lectures: (i) it schedules sections of subjects so that each section is evenly likely to be registered by the students, and (ii) it considers the failure rates and periodicity a subject is taught. We present a multi-objective integer programming model that maximizes the use of specific time slots, the symmetry in which the lectures of a course are scheduled during a week, and the flexibility for straggler students to take courses. The model is solved using commercial software, and it is applied to a real course-timetabling problem. We show the advantages of its use by comparing the model’s solution with the actual solution obtained by the manual scheduling.

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Mathematics, 2020, vol.8(10), 1763

Keywords

Course timetabling, Integer programing, Balanced scheduling, Curriculum-based timetabling

item.page.dc.rights

item.page.dc.rights.url