Simulation of Water-Use Efficiency of Crops under Different Irrigation Strategies

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

Irrigation management is a key factor in attaining optimal yields, as different irrigation strategies lead to different yields even when using the same amount of water or under the same weather conditions. Our research aimed to simulate the water-use efficiency (WUE) of crops considering different irrigation strategies in the Central Valley of Chile. By means of AquaCrop-OS, we simulated expected yields for combinations of crops (maize, sugar beet, wheat), soil (clay loam, loam, silty clay loam, and silty loam), and bulk density. Thus, we tested four watering strategies: rainfed, soil moisture-based irrigation, irrigation with a fixed interval every 1, 3, 5, and 7 days, and an algorithm for optimal irrigation scheduling under water supply constraints (GET-OPTIS). The results showed that an efficient irrigation strategy must account for soil and crop characteristics. Among the tested strategies, GET-OPTIS led to the best performance for crop yield, water use, water-use efficiency, and profit, followed by the soil moisture-based strategy. Thus, soil type has an important influence on the yield and performance of different irrigation strategies, as it provides a significant storage and buffer for plants, making it possible to produce “more crop per drop”. This work can serve as a methodological guide for simulating the water-use efficiency of crops and can be used alongside evidence from the field

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Water, 2020, vol.12(10), 2930

Keywords

Crop yield, Water use, Irrigation management

item.page.dc.rights

item.page.dc.rights.url