The Ehlers–Geroch theorem on geodesic motion in general relativity

Date

2015

Type:

Artículo

item.page.extent

item.page.accessRights

item.contributor.advisor

ORCID:

Journal Title

Journal ISSN

Volume Title

Publisher

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

We provide a detailed and rigorous proof of (a generalized version of) the Ehlers–Geroch theorem on geodesic motion in metric theories of gravity: we assume that (M, g) is a spacetime satisfying an averaged form of the dominant energy condition and some further technical assumptions indicated in the bulk of this paper. Then, a small body which is allowed to deform the original spacetime metric g moves, nonetheless, along a geodesic of (M, g).

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

International Journal of Geometric Methods in Modern Physics, 2015, vol. 12, n° 03, 19 p.

Keywords

Geodesic motion, dominant energy condition, averaged dominant energy condition, (3 + 1)-spacetime decomposition

item.page.dc.rights

item.page.dc.rights.url