The parietal cortex has a causal role in ambiguity computations in humans




Valdebenito-Oyarzo, Gabriela
Martínez-Molina, María Paz
Zamorano, Francisco
Figueroa-Vargas, Alejandra
Larraín-Valenzuela, Josefina
Stecher, Ximena
Salinas, César
Bastin, Julien
Valero-Cabré, Antoni

Journal Title

Journal ISSN

Volume Title


Research Projects

Organizational Units

Journal Issue


Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.



Decision making, Parietal lobe, Functional magnetic resona, Behavior, Electroencephalography, Functional electrical stimulation, Pemutation, Probability distribution


Valdebenito-Oyarzo G, Martínez-Molina MP, Soto-Icaza P, Zamorano F, Figueroa-Vargas A, Larraín-Valenzuela J, et al. (2024) The parietal cortex has a causal role in ambiguity computations in humans. PLoS Biol 22(1): e3002452.