Person:
Rivas Jiménez, Lina María

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Rivas Jiménez

First Name

Lina María

Name

¿Qué estás buscando?



Search Results

Now showing 1 - 3 of 3
  • Publication
    Creación del primer biorrepositorio nacional de bacterias multirresistentes disponible para el estudio de la resistencia bacteriana en Chile
    (2022) García, Patricia; Rivas Jiménez, Lina María; Peters, Anne Sophie; Henríquez, Paola; Castillo, Loriana; Illesca, Vijna; Maripani, Andrea; Moreno, Juan; Mühlhause, Margareta; Porte, Lorena; Rioseco, María Luisa; Rojas, Pamela; Silva, Francisco; Suazo, Patricio; Munita, Jose M.
    La disponibilidad de cepas bacteriana para el estudio de la resis tencia bacteriana es clave para los avances en la investigación básica y clínica respecto del tema. Existen pocos biorrepositorios o bancos de bacterias con mecanismos de resistencia conocidos, aisladas de infecciones clínicamente significativas. Una revisión de la literatura revela que sólo en los Estados Unidos de América existe un biobanco de aislados resistentes disponibles para estudios. En esta publicación se cuenta cómo se creó el primer biorrepositorio de bacterias resistentes en Chile asociados a la Red de Laboratorios MICROB-R, con la participación de 11 centros distribuidos a lo largo del país, que a la fecha cuenta con más de 3.500 aislados bacterianos estudiados fenotípica y genotípicamente, disponibles para la comunidad científica chilena
  • Publication
    High Burden of Intestinal Colonization With Antimicrobial-Resistant Bacteria in Chile: An Antibiotic Resistance in Communities and Hospitals (ARCH) Study
    (2023) Araos Bralic, Rafael Ignacio; Smith, Rachel; Styczynski, Ashley; Sánchez, Felipe; Acevedo, Johanna; Maureira, Lea; Paredes, Catalina; González, Maite; Rivas Jiménez, Lina María; Spencer, Maria; Peters, Anne Sophie; Khan, Ayesha; Sepulveda, Dino; Rojas, Loreto; Rioseco, María; Usedo, Pedro; Rojas, Pamela; Huidobro, Laura; Ferreccio, Catterina; Park, Benjamin; Undurraga, Eduardo; D'Agata, Erika; Jara, Alejandro; Munita, Jose M.
    Background: Antimicrobial resistance is a global threat, heavily impacting low- and middle-income countries. This study estimated antimicrobial-resistant gram-negative bacteria (GNB) fecal colonization prevalence in hospitalized and community-dwelling adults in Chile before the coronavirus disease 2019 pandemic. Methods: From December 2018 to May 2019, we enrolled hospitalized adults in 4 public hospitals and community dwellers from central Chile, who provided fecal specimens and epidemiological information. Samples were plated onto MacConkey agar with ciprofloxacin or ceftazidime added. All recovered morphotypes were identified and characterized according to the following phenotypes: fluoroquinolone-resistant (FQR), extended-spectrum cephalosporin-resistant (ESCR), carbapenem-resistant (CR), or multidrug-resistant (MDR; as per Centers for Disease Control and Prevention criteria) GNB. Categories were not mutually exclusive. Results: A total of 775 hospitalized adults and 357 community dwellers were enrolled. Among hospitalized subjects, the prevalence of colonization with FQR, ESCR, CR, or MDR-GNB was 46.4% (95% confidence interval [CI], 42.9-50.0), 41.2% (95% CI, 37.7-44.6), 14.5% (95% CI, 12.0-16.9), and 26.3% (95% CI, 23.2-29.4). In the community, the prevalence of FQR, ESCR, CR, and MDR-GNB colonization was 39.5% (95% CI, 34.4-44.6), 28.9% (95% CI, 24.2-33.6), 5.6% (95% CI, 3.2-8.0), and 4.8% (95% CI, 2.6-7.0), respectively. Conclusions: A high burden of antimicrobial-resistant GNB colonization was observed in this sample of hospitalized and community-dwelling adults, suggesting that the community is a relevant source of antibiotic resistance. Efforts are needed to understand the relatedness between resistant strains circulating in the community and hospitals.
  • Publication
    Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa
    (2022) Contreras-Gómez, María José; Martínez, José Rodrigo Waldemar; Rivas Jiménez, Lina María; Riquelme-Neira, Roberto; Ugalde, Juan A.; Wozniak, Aniela; García, Patricia; Munita, Jose M.; Olivares-Pacheco, Jorge; Alcalde-Rico, Manuel
    Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.