Browsing by Author "Maliqueo, Manuel"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Effects of a High-Fat Diet and Docosahexaenoic Acid during Pregnancy on Fatty Acid Composition in the Fetal Livers of Mice(2023) Álvarez, Daniela; Ortiz, Macarena; Valdebenito, Gabriel; Crisosto, Nicolás; Echiburú, Bárbara; Valenzuela, Rodrigo; Espinoza, Alejandra; Maliqueo, ManuelA high-fat diet (HFD) during pregnancy promotes fat accumulation and reduces docosahexaenoic acid (DHA) levels in the liver of the offspring at postnatal ages, which can depend on fetal sex. However, the prenatal mechanisms behind these associations are still unclear. Thus, we analyzed if an HFD alters DHA content and the expression of molecules related to fatty acid (FA) metabolism in the fetal liver. Female C57BL/6 mice were fed a control diet or HFD for 4–6 weeks before pregnancy until the gestational day (GD) 17.5. A subgroup of each diet received DHA (100 mg/Kg) orally from GD 6.5 until 16.5. On GD 17.5, maternal livers, placentas, and livers from male and female fetuses were collected for FA profiling with gas-chromatography and gene expression of molecules related to FA metabolism using qPCR. PPAR-α protein expression was evaluated using Western blot. The gene expression of placental FA transporters was also assessed. An HFD increased eicosapentaenoic acid (EPA) and decreased DHA levels and protein expression of PPAR-α in the fetal livers of both sexes. DHA increased the gene expression of Ppara, Cpt1, and Acsl1 in the livers of female fetuses. Therefore, an HFD reduces DHA levels and PPAR-α, a master regulator of gene expression, in the fetal liver. In turn, the livers of female fetuses seem to be more sensitive to DHA action.Publication Folate and Vitamin B12 Levels in Chilean Women with PCOS and Their Association with Metabolic Outcomes(2024) Carrasco, Matías; Silveira, Taís; Martínez, Paz; Cerpa, Leslie; Calfunao, Susan; Echiburú, Bárbara; Maliqueo, Manuel; Crisosto, Nicolás; Salas, FranciscaPolycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age. Many women with PCOS have been found to have an unbalanced diet and deficiencies in essential nutrients. This study aimed to assess the levels of folate and vitamin B12 (B12) and their relationship with metabolic factors in women with PCOS. Anthropometric, clinical, and genetic analyses were conducted to evaluate markers related to one-carbon metabolism in women with PCOS and in a control group. The PCOS group had a higher BMI and HOMA-IR (1.7 vs. 3.1; p < 0.0001). HDL cholesterol levels were 23% lower and triglyceride levels were 74% higher in women with PCOS. Although there were no significant differences in folate and B12 levels between the PCOS and control groups, over 60% of women with PCOS had low B12 levels (<300 pg/mL) and high homocysteine levels. In addition, the MTHFR A1298C and C677T polymorphisms were not associated with PCOS. Moreover, erythrocyte folate levels were positively correlated with fasting glucose, triglycerides, and free androgen index, and negatively correlated with SHBG and LH levels. These results suggest that B vitamins may be associated with the metabolic phenotype in PCOS. This study emphasizes the potential link between folate, vitamin B12, and metabolic and hormonal outcomes in women with PCOS.Publication Oxidative Stress in Polycystic Ovary Syndrome: Impact of Combined Oral Contraceptives(2024) Santander, Nicolás; Figueroa, Esteban; González, Alejandro; Maliqueo, Manuel; Echiburú, Bárbara; Crisosto, Nicolás; Salas, FranciscaPolycystic Ovary Syndrome (PCOS) is a complex hormonal disorder that is associated with heightened metabolic risks. While oxidative stress (OS) is known to play a role in PCOS, the precise nature of the relationship between PCOS and increased OS remains not entirely understood. Combined oral contraceptives (COCs) are the first-line treatment to regulate menstrual cycles and androgen levels, but their impact on oxidative stress requires further study. We conducted a transcriptomic analysis using RNAseq and assessed the levels of various oxidative stress (OS) markers in serum samples from women with PCOS and controls and whether they were using combined oral contraceptives (COCs), including enzymatic activities, FRAP, and 8-isoprostane (8-iso). A total of 359 genes were differentially expressed in women with PCOS compared to control women. Genes differentially expressed were enriched in functions related to inflammation and, interestingly, oxidative stress response. In controls, 8-iso levels were increased in women using COCs, whereas in women with PCOS, 8-iso levels were reduced in those using oral contraceptives (191.1 ± 97 vs. 26.4 ± 21 pg/mL, p: <0.0001). Correlation analyses showed a trend for a negative correlation between 8-iso and Ferriman score in women with PCOS consuming COCs (r = -0.86, p = 0.06) and a negative correlation between GSH and hyperandrogenism in women with PCOS (r = -0.89, p = 0.01). These results reveal the presence of lipid peroxidation in women with PCOS, which was modified by the use of COCs, providing new insights into the pathophysiology of PCOS in the Chilean population.Publication Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome(2023) Risal, Sanjiv; Li, Congru; Luo, Qing; Fornes, Romina; Lu, Haojiang; Eriksson, Gustaw; Manti, Maria; Ohlsson, Claes; Lindgren, Eva; Crisosto, Nicolás; Maliqueo, Manuel; Echiburú, Barbara; Recabarren, Sergio; Sir Petermann, Teresa; Benrick, Anna; Brusselaers, Nele; Qiao, Jie; Deng, Qiaolin; Stener-Victorin, ElisabetThe transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1-F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline.