Browsing by Author "Leu, Costin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Publication Identification and quantification of oligogenic loss-of-function disorders(2021) Stefanski, Arthur; Pérez, Eduardo; Mrdjen, Marko; McHugh, Megan; Leu, Costin; Lal, DennisPurpose: Monogenic disorders can present clinically heterogeneous symptoms. We hypothesized that in patients with a monogenic disorder caused by a large deletion, frequently additional loss-of-function (LOF)-intolerant genes are affected, potentially contributing to the phenotype. Methods: We investigated the LOF-intolerant gene distribution across the genome and its association with benign population and pathogenic classified deletions from individuals with presumably monogenic disorders. For people with presumably monogenic epilepsy, we compared Human Phenotype Ontology terms in people with large and small deletions. Results: We identified LOF-intolerant gene dense regions that were enriched for ClinVar and depleted for population copy number variants. Analysis of data from >143,000 individuals with a suspected monogenic disorder showed that 2.5% of haploinsufficiency disorder-associated deletions can affect at least 1 other LOF-intolerant gene. Focusing on epilepsy, we observed that 13.1% of pathogenic and likely pathogenic ClinVar deletions <3 megabase pair, covering the diagnostically most relevant genes, affected at least 1 additional LOF-intolerant gene. Those patients have potentially more complex phenotypes with increasing deletion size. Conclusion: We could systematically show that large deletions frequently affected admditional LOF-intolerant genes in addition to the established disease gene. Further research is needed to understand how additional potential disease-relevant genes influence monogenic disorders to improve clinical care and the efficacy of targeted therapies.Publication Incidence and prevalence of major epilepsy-associated brain lesions(2022) López; Javier; Smuk, Victoria; Leu, Costin; Nasr, Gaelle; Vegh, Deborah; Stefanski, Arthur; Pérez, Eduardo; Busch, Robyn; Jehi, Lara; Najm, Imad; Blümcke, Ingmar; Lal, DennisEpilepsy surgery is an effective treatment option for drug-resistant focal epilepsy patients with associated structural brain lesions. However, little epidemiological data are available regarding the number of patients with these lesions. We reviewed data regarding (1) the prevalence and incidence of epilepsy; (2) the proportion of epilepsy patients with focal epilepsy, drug-resistant epilepsy, and drug-resistant focal epilepsies; and (3) the number of epilepsy presurgical evaluations and surgical resections. We also assessed the relative proportion of brain lesions using post-surgical histopathological findings from 541 surgical patients from the Cleveland Clinic and 9,523 patients from a European multi-center cohort. Data were combined to generate surgical candidate incidence and prevalence estimates and the first lesion-specific estimates for hippocampal sclerosis (HS), low-grade epilepsy-associated brain tumors (LEAT), malformations of cortical development (MCD), glial scars, vascular malformations, and encephalitis. The most frequently diagnosed brain lesions were HS (incidence = 2.32 ± 0.26 in 100,000, prevalence = 19.40 ± 2.16 in 100,000) for adults and MCD (incidence = 1.15 ± 0.34 in 100,000, prevalence = 6.52 ± 1.89 in 100,000) for children. Our estimates can guide patient advocacy groups, clinicians, researchers, policymakers in education, development of health care strategy, resource allocation, and reimbursement schedules.Item SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities(2021) Macnee, Marie; Pérez Palma, Eduardo; Schumacher-Bass, Sarah; Dalton, Jarrod; Leu, Costin; Blankenberg, Daniel; Lal, DennisLiterature exploration in PubMed on a large number of biomedical entities (e.g. genes, diseases or experiments) can be time-consuming and challenging, especially when assessing associations between entities. Here, we describe SimText, a user-friendly toolset that provides customizable and systematic workflows for the analysis of similarities among a set of entities based on text. SimText can be used for (i) text collection from PubMed and extraction of words with different text mining approaches, and (ii) interactive analysis and visualization of data using unsupervised learning techniques in an interactive app.Publication The genomic landscape across 474 surgically accessible epileptogenic human brain lesions(2022) López, Javier; Leu, Costin; Macnee, Marie; Khoury, Jean; Hoffmann, Lucas; Coras, Roland; Kobow, Katja; Bhattarai, Nisha; Pérez, Eduardo; Hamer, Hajo; Brandner, Sebastian; Rössler, Karl; Bien, Christian; Kalbhenn, Thilo; Pieper, Tom; Hartlieb, Till; Butler, Elizabeth; Genovese, Giulio; Becker, Kerstin; Altmüller, Janine; Niestroj, Lisa; Ferguson, Lisa; Busch, Robyn; Nürnberg, Peter; Najm, Imad; Blümcke, Ingmar; Lal, DennisUnderstanding the exact molecular mechanisms involved in the etiology of epileptogenic pathologies with or without tumor activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants (SNV) in low-grade epilepsy-associated tumors (LEAT; 7.92 ± 5.65 SNV) than in brain tissue from malformations of cortical development (MCD; 6.11 ± 4 SNV) or hippocampal sclerosis (HS; 5.1 ± 3.04 SNV). Tumor tissues also had the largest number of likely pathogenic variant carrying cells. LEAT had the highest proportion of samples with one or more somatic copy number variants (CNV; 24.7%), followed by MCD (5.4%) and HS (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among LEAT. For germline variant-associated MCD genes such as TSC2, DEPDC5, and PTEN, germline SNV were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in twelve established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the etiology of LEAT (e.g., BRAF) and MCD (e.g., SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with LEAT and NRAS Q61 mutated protein with a complex MCD characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical genetic analyses showed that the numbers of somatic SNV across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with LEAT. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening, and guides future directions for clinical implementation of epilepsy surgery genetics.