SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities
Date
2021
Type:
Article
item.page.extent
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
Literature exploration in PubMed on a large number of biomedical entities (e.g. genes, diseases or experiments) can be time-consuming and challenging, especially when assessing associations between entities. Here, we describe SimText, a user-friendly toolset that provides customizable and systematic workflows for the analysis of similarities among a set of entities based on text. SimText can be used for (i) text collection from PubMed and extraction of words with different text mining approaches, and (ii) interactive analysis and visualization of data using unsupervised learning techniques in an interactive app.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Marie Macnee, Eduardo Pérez-Palma, Sarah Schumacher-Bass, Jarrod Dalton, Costin Leu, Daniel Blankenberg, Dennis Lal, SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities, Bioinformatics, Volume 37, Issue 22, 15 November 2021, Pages 4285–4287, https://doi.org/10.1093/bioinformatics/btab365
Keywords
Biomedical entities, Similarities, Text mining