Browsing by Author "Deprest, Jan"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A semi-automated method for unbiased alveolar morphometry: Validation in a bronchopulmonary dysplasia model(2020-09) Salaets, Thomas; Tack, Bieke; Gie, André; Pavie, Benjamin; Sindhwani, Nikhil; Jiménez, Julio; Regin, Yannick; Allegaert, Karel; Deprest, Jan; Toelen, JeanReproducible and unbiased methods to quantify alveolar structure are important for research on many lung diseases. However, manually estimating alveolar structure through stereology is time consuming and inter-observer variability is high. The objective of this work was to develop and validate a fast, reproducible and accurate (semi-)automatic alternative. A FIJI-macro was designed that automatically segments lung images to binary masks, and counts the number of test points falling on tissue and the number of intersections of the air-tissue interface with a set of test lines. Manual selection remains necessary for the recognition of non-parenchymal tissue and alveolar exudates. Volume density of alveolar septa () and mean linear intercept of the airspaces (Lm) as measured by the macro were compared to theoretical values for 11 artificial test images and to manually counted values for 17 lungs slides using linear regression and Bland-Altman plots. Inter-observer agreement between 3 observers, measuring 8 lungs both manually and automatically, was assessed using intraclass correlation coefficients (ICC). and Lm measured by the macro closely approached theoretical values for artificial test images (R2 of 0.9750 and 0.9573 and bias of 0.34% and 8.7%). The macro data in lungs were slightly higher for and slightly lower for Lm in comparison to manually counted values (R2 of 0.8262 and 0.8288 and bias of -6.0% and 12.1%). Visually, semi-automatic segmentation was accurate. Most importantly, manually counted and Lm had only moderate to good inter-observer agreement (ICC 0.859 and 0.643), but agreements were excellent for semi-automatically counted values (ICC 0.956 and 0.900). This semi-automatic method provides accurate and highly reproducible alveolar morphometry results. Future efforts should focus on refining methods for automatic detection of non-parenchymal tissue or exudates, and for assessment of lung structure on 3D reconstructions of lungs scanned with microCT.Item Balloon removal after fetoscopic endoluminal tracheal occlusion for congenital diaphragmatic hernia.(Elsevier, 2017) Jimenez, Julio; Eixarch, Elisenda; DeKoninck, Philip; Bennini, Joao; Devlieger, Roland; Peralta, Cleisson; Gratacos, Eduard; Deprest, JanBACKGROUND: Isolated congenital diaphragmatic hernia defect allows viscera to herniate into the chest, competing for space with the developing lungs. At birth, pulmonary hypoplasia leads to respiratory insufficiency and persistent pulmonary hypertension that is lethal in up to 30% of patients. Antenatal measurement of lung size and liver herniation can predict survival after birth. Prenatal intervention aims at stimulating lung development, clinically achieved by percutaneous fetal endoscopic tracheal occlusion under local anesthesia. This in utero treatment requires a second intervention to reestablish the airway, either before birth or at delivery. OBJECTIVE: To describe our experience with in utero endotracheal balloon removal. MATERIALS AND METHODS: This is a retrospective analysis of prospectively collected data on consecutive patients with congenital diaphragmatic hernia treated in utero by fetal endoscopic tracheal occlusion from 3 centers. Maternal and pregnancy-associated variables were retrieved. Balloon removal attempts were categorized as elective or emergency and by technique (in utero: ultrasound-guided puncture; fetoscopy; ex utero: on placental circulation or postnatal tracheoscopy). RESULTS: We performed 351 balloon insertions during a 144-month period. In 9 cases removal was attempted outside fetal endoscopic tracheal occlusion centers, 3 of which were deemed impossible and led to neonatal death. We attempted 302 in-house balloon removals in 292 fetuses (217 elective [71.8%], 85 emergency [28.2%]) at 33.4 ± 0.1 weeks (range: 28.9-37.1), with a mean interval to delivery of 16.6 ± 0.8 days (0-85). Primary attempt was by fetoscopy in 196 (67.1%), by ultrasound-guided puncture in 62 (21.2%), by tracheoscopy on placental circulation in 30 (10.3%), and postnatal tracheoscopy in 4 cases (1.4%); a second attempt was required in 10 (3.4%) cases. Each center had different preferences for primary technique selection. In elective removals, we found no differences in the interval to delivery between fetoscopic and ultrasound-guided puncture removals. Difficulties during fetoscopic removal led to the development of a stylet to puncture the balloon, leading to shorter operating time and easier reestablishment of airways. CONCLUSION: In these fetal treatment centers, the balloon could always be removed successfully. In 90% this was in utero, with the use of fetoscopy preferred over ultrasound-guided puncture. Ex utero removal was a fall-back procedure. In utero removal does not seem to precipitate immediate membrane rupture, labor, or delivery, although the design of the study did not allow for a formal conclusion. For fetoscopic removals, the introduction of a stylet facilitated retrieval. Successful removal may rely on a permanently prepared team with expertise in all possible techniques.Item Complementary Effect of Maternal Sildenafil and Fetal Tracheal Occlusion Improves Lung Development in the Rabbit Model of Congenital Diaphragmatic Hernia(2020) Russo, Francesca Maria; Cunha, Marina Gabriela Monteiro Carvalho Mori Da; Jimenez, Julio; Lesage, Flore; Eastwood, Mary Patrice; Toelen, Jaan; Deprest, JanObjective: To evaluate the effect of combining antenatal sildenafil with fetal tracheal occlusion (TO) in fetal rabbits with surgically induced congenital diaphragmatic hernia (CDH). Background: Although antenatal sildenafil administration rescues vascular abnormalities in lungs of fetal rabbits with CDH, it only partially improves airway morphometry. We hypothesized that we could additionally stimulate lung growth by combining this medical treatment with fetal TO. Methods: CDH was created on gestational day (GD)23 (n=54). Does were randomized to receive either sildenafil 10 mg/kg/d or placebo by subcutaneous injection from GD24 to GD30. On GD28, fetuses were randomly assigned to TO or sham neck dissection. At term (GD30) fetuses were delivered, ventilated, and finally harvested for histological and molecular analyses. Unoperated littermates served as controls. Results: The lung-to-body-weight ratio was significantly reduced in sham-CDH fetuses either (1.2 ± 0.3% vs 2.3 ± 0.3% in controls, P=0.0003). Sildenafil had no effect on this parameter, while CDH fetuses undergoing TO had a lung-to-body-weight ratio comparable to that of controls (2.5 ± 0.8%, P<0.0001). Sildenafil alone induced an improvement in the mean terminal bronchiolar density (2.5 ± 0.8 br/mm vs 3.5 ± 0.9 br/mm, P=0.043) and lung mechanics (static elastance 61 ± 36 cmH2O /mL vs 113 ± 40 cmH2O/mL, P=0.008), but both effects were more pronounced in fetuses undergoing additional TO (2.1 ± 0.8 br/mm, P=0.001 and 31 ± 9 cmH2O/mL, P<0.0001 respectively). Both CDH-sham and CDH-TO fetuses treated with placebo had an increased medial wall thickness of peripheral pulmonary vessels (41.9 ± 2.9% and 41.8 ± 3.2%, vs 24.0 ± 2.9% in controls, P<0.0001). CDH fetuses treated with sildenafil, either with or without TO, had a medial thickness in the normal range (29.4% ± 2.6%). Finally, TO reduced gene expression of vascular endothelial growth factor and surfactant protein A and B, but this effect was counteracted by sildenafil. Conclusion: In the rabbit model for CDH, the combination of maternal sildenafil and TO has a complementary effect on vascular and parenchymal lung development.Item Local pulmonary drug delivery in the preterm rabbit: feasibility and efficacy of daily intratracheal injections(American Physiological Society, 2019-04) Salaets, Thomas; Gie, Andre; Jiménez, Julio; Aertgeerts, Margo; Gheysens, Olivier; Vande Velde, Vande Velde; Koole, Michel; Murgia, Xabi; Casiraghi, Costanza; Ricci, Francesca; Salomone, Fabrizio; Villetti, Gino; Allegaert, Karel; Deprest, Jan; Toelen, JaanRecent clinical trials in newborns have successfully used surfactant as a drug carrier for an active compound, to minimize systemic exposure. To investigate the translational potential of surfactant-compound mixtures and other local therapeutics, a relevant animal model is required in which intratracheal administration for maximal local deposition is technically possible and well tolerated. Preterm rabbit pups (born at 28 days of gestation) were exposed to either hyperoxia or normoxia and randomized to receive daily intratracheal surfactant, daily intratracheal saline, or no injections for 7 days. At day 7, the overall lung function and morphology were assessed. Efficacy in terms of distribution was assessed by micro-PET-CT on both day 0 and day 7. Lung function as well as parenchymal and vascular structure were altered by hyperoxia, thereby reproducing a phenotype reminiscent of bronchopulmonary dysplasia (BPD). Neither intratracheal surfactant nor saline affected the survival or the hyperoxia-induced BPD phenotype of the pups. Using PET-CT, we demonstrate that 82.5% of the injected radioactive tracer goes and remains in the lungs, with a decrease of only 4% after 150 min. Surfactant and saline can safely and effectively be administered in spontaneously breathing preterm rabbits. The described model and method enable researchers to evaluate intratracheal pharmacological interventions for the treatment of BPD.Item Preclinical evaluation of cell-based strategies to prevent or treat bronchopulmonary dysplasia in animal models: a systematic review(Taylor & Francis Online, 2017) Lesage, Flore; Jimenez, Julio; Toelen, Jaan; Deprest, JanBronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity as no effective treatment is available to date. This calls for the exploration of new therapeutic options like cell therapy, which is already effective for various human (lung) disorders. We systematically searched the MEDLINE, Embase, and Web of Science databases from the earliest date till January 2017 and included original studies on the perinatal use of cell-based therapies (i.e. cells and/or cell-derivatives) to treat BDP in animal models. Fourth publications describing 47 interventions were retrieved. Newborn mice/rats raised in a hyperoxic environment were studied in most interventions. Different cell types - either intact cells or their conditioned medium - were administered, but bone marrow and umbilical cord blood derived mesenchymal stem cells were most prevalent. All studies reported positive effects on outcome parameters including alveolar and vascular morphometry, lung function, and inflammation. Cell homing to the lungs was demonstrated in some studies, but the therapeutic effects seemed to be mostly mediated via paracrine modulation of inflammation, fibrosis and angiogenesis. CONCLUSION: Multiple rat/mouse studies show promise for cell therapy for BPD. Yet careful study of action mechanisms and side effects in large animal models is imperative before clinical translation can be achieved.Item Preterm birth impairs postnatal lung development in the neonatal rabbit model(2020) Salaets, Thomas; Aertgeerts, Margo; Gie, André; Winter, Derek de; Vignero, Janne; Regin, Yannick; Jiménez, Julio; Velde, Greetje Vande; Allegaert, Karel; Deprest, Jan; Toelen, JaanBackground: Bronchopulmonary dysplasia continues to cause important respiratory morbidity throughout life, and new therapies are needed. The common denominator of all BPD cases is preterm birth, however most preclinical research in this area focusses on the effect of hyperoxia or mechanical ventilation. In this study we investigated if and how prematurity affects lung structure and function in neonatal rabbits. Methods: Pups were delivered on either day 28 or day 31. For each gestational age a group of pups was harvested immediately after birth for lung morphometry and surfactant protein B and C quantification. All other pups were hand raised and harvested on day 4 for the term pups and day 7 for the preterm pups (same corrected age) for lung morphometry, lung function testing and qPCR. A subset of pups underwent microCT and dark field imaging on day 0, 2 and 4 for terms and on day 0, 3, 5 and 7 for preterms. Results: Preterm pups assessed at birth depicted a more rudimentary lung structure (larger alveoli and thicker septations) and a lower expression of surfactant proteins in comparison to term pups. MicroCT and dark field imaging revealed delayed lung aeration in preterm pups, in comparison to term pups. Preterm birth led to smaller pups, with smaller lungs with a lower alveolar surface area on day 7/day 4. Furthermore, preterm birth affected lung function with increased tissue damping, tissue elastance and resistance and decreased dynamic compliance. Expression of vascular endothelial growth factor (VEGFA) was significantly decreased in preterm pups, however in the absence of structural vascular differences. Conclusions: Preterm birth affects lung structure and function at birth, but also has persistent effects on the developing lung. This supports the use of a preterm animal model, such as the preterm rabbit, for preclinical research on BPD. Future research that focuses on the identification of pathways that are involved in in-utero lung development and disrupted by pre-term birth, could lead to novel therapeutic strategies for BPDItem Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia(2016) Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozzen; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, JaanBronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.Item Simvastatin attenuates lung functional and vascular effects of hyperoxia in preterm rabbits(Nature Pub Group, 2020-06) Salaets, Thomas; Tack, Bieke; Jiménez, Julio; Gie, Andrés; Lesage, Flore; Winter, Derek; Berghen, Nathalie; Allegaert, Karel; Deprest, Jan; Toelen, JaanBackground: Bronchopulmonary dysplasia (BPD) remains a frequent complication following preterm birth, affecting respiratory health throughout life. Transcriptome analysis in a preterm rabbit model for BPD revealed dysregulation of key genes for inflammation, vascular growth and lung development in animals exposed to hyperoxia, which could be prevented by simvastatin. Methods: Preterm rabbits were randomized to either normoxia (21% O2) or hyperoxia (95% O2) and within each condition to treatment with 5 mg/kg simvastatin daily or control. Lung function, structure and mRNA-expression was assessed on day 7. Results: Simvastatin partially prevented the effect of hyperoxia on lung function, without altering alveolar structure or inflammation. A trend towards a less fibrotic phenotype was noted in simvastatin-treated pups, and airways were less muscularized. Most importantly, simvastatin completely prevented hyperoxia-induced arterial remodeling, in association with partial restoration of VEGFA and VEGF receptor 2 (VEGFR2) expression. Simvastatin however decreased survival in pups exposed to normoxia, but not to hyperoxia. Conclusion: Repurposing of simvastatin could be an advantageous therapeutic strategy for bronchopulmonary dysplasia and other developmental lung diseases with pulmonary vascular disease. The increased mortality in the treated normoxia group however limits the translational value at this dose and administration route.Item The amniotic fluid as a source of mesenchymal stem cells with lung‐specific characteristics(2017) Lesage, Flore; Zia, Silvia; Jiménez, Julio; Deprest, Jan; Toelen, JaanThe amniotic fluid is a clinically accessible source of mesenchymal stem cells (AF‐MSC) during gestation, which enables autologous cellular therapy for perinatal disorders. The origin of AF‐MSC remains elusive: renal and neuronal progenitors have been isolated from the AF‐MSC pool, yet no cells with pulmonary characteristics. We analyzed gene expression of pulmonary and renal markers of 212 clonal lines of AF‐MSC isolated from amniocentesis samples. AF‐MSC were cultured on dishes coated with extracellular matrix (ECM) proteins from decellularized fetal rabbit lungs. In vivo differentiation potential of AF‐MSC that expressed markers suggestive of lung fate was tested by renal subcapsular injections in immunodeficient mice. Of all the isolated AF‐MSC lines, 26% were positive for lung endodermal markers FOXA2 and NKX2.1 and lacked expression of renal markers (KSP). This AF‐MSC subpopulation expressed other lung‐specific factors, including IRX1, P63, FOXP2, LGR6, SFTC, and PDPN. Pulmonary marker expression decreased over passages when AF‐MSC were cultured under conventional conditions, yet remained more stable when culturing the cells on lung ECM‐coated dishes. Renal subcapsular injection of AF‐MSC expressing lung‐specific markers resulted in engrafted cells that were SPTB positive. These data suggest that FOXA2+/NKX2.1+/KSP‐ AF‐MSC lines have lung characteristics which are supported by culture on lung ECM‐coated dishes.Item Tissuepatch is biocompatible and seals iatrogenic membrane defects in a rabbit model(2018) Engels, Alexander; Joyeux, Luc; Van der Merwe, Johannes; Jimenez, Julio; Pranpanus, Savitree; Barret, David; Connon, Che; Chowdhury, Tina; David, Anna; Deprest, JanObjective: To evaluate novel sealing techniques for their biocompatibility and sealing capacity of iatrogenic fetal membrane defects in a pregnant rabbit model. Method: At day 23 of gestation (term = d31), a standardized fetoscopy was performed through a 14G cannula. The resulting fetal membrane defect was closed with condensed collagen, collagen with fibrinogen, Tissuepatch, Duraseal, or a conventional collagen plug (Lyostypt) as reference. At d30, the fetuses were harvested and full thickness fetal membrane samples were analyzed. The study consisted of 2 consecutive parts: (1) biocompatibility testing by fetal survival, apoptosis, and infiltration of polymorphonuclear cells in the membranes and (2) the efficacy to seal fetal membrane defects. Results: Three sealants (collagen with fibrinogen, Duraseal, or Lyostypt) were associated with a higher fetal mortality compared to control unmanipulated littermates and hence were excluded from further analysis. Tissuepatch was biocompatible, and amniotic fluid levels were comparable to those of control untouched littermates. Compared to the condensed collagen, Tissuepatch was also easier in surgical handling and induced limited cell proliferation. Conclusion: Tissuepatch had the best biocompatibility and efficacy in sealing an iatrogenic fetal membrane defect in the pregnant rabbit compared to other readily available sealants.