Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carrero, David"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Ski Is Required for Tri-Methylation of H3K9 in Major Satellite and for Repression of Pericentromeric Genes: Mmp3, Mmp10 and Mmp13, in Mouse Fibroblasts
    (Elsevier Ltd., 2020) Capelli, Claudio; Sepúlveda, Hugo; Rivas, Solange; Víctor, Paola; Urzúa, Ulises; Donoso, Gerardo; Sagredo, Eduardo; Carrero, David; Casanova-Ortiz, Emmanuel; Sagredo, Alfredo; González, Marisel; Manterola, Marcia; Nardocci, Gino; Armisén, Ricardo; Montecino, Martín; Marcelain, Katherine
    Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski −/− MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
  • Loading...
    Thumbnail Image
    Publication
    SKI regulates rRNA transcription and pericentromeric heterochromatin to ensure centromere integrity and genome stability
    (2025) Pola, Víctor; Carrero, David; Sagredo, Eduardo; Inostroza, Víctor; Cappelli, Claudio; Rivas, Solange; Bitrán, Mirita; Zambrano, Evelyn; Gonzalez, Evelin; Morales, Fernanda; Manterola, Marcia; Montecino, Martín; Armisen, Ricardo; Marcelain, Katherine
    Accurate chromosome segregation and ribosomal gene expression silencing are essential for maintaining genome integrity, and disruptions in these processes are key for oncogenesis and cancer progression. Here, we demonstrate a novel role for the transcriptional co-repressor SKI in regulating rDNA and pericentromeric heterochromatin (PCH) silencing in human cells. We found that SKI localizes to the rDNA promoter on acrocentric chromosomes and is crucial for maintaining H3K9 trimethylation (H3K9me3) and repressing 45S rRNA gene expression. SKI is also associated with BSR and HSATII satellites within PCH, where is necessary for H3K9 methylation and recruitment of SUV39H1 and HP1α, key players for heterochromatin silencing and centromere function. Consequently, SKI deficiency disrupted centromere integrity and resulted in aberrant chromosome segregation, micronuclei formation, and chromosome instability. The identification of SKI as a key participant in the epigenetic-mediated silencing of pericentromeric and ribosomal DNA provides a fundamental insight, paving the way for new research into the intricate relationship between transcriptional regulation and genome instability during cancer progression, and opening novel opportunities for therapeutic intervention.

Santiago

Av. La Plaza Nº 680, Las Condes

Concepción

Ainavillo Nº 456, Concepción

Logo Universidad del Desarrollo

Implementado por OpenGeek Services