Browsing by Author "Brünger, Tobias"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Publication CNV-ClinViewer: enhancing the clinical interpretation oflarge copy-number variants online(2023) Macnee, Marie; Pérez Palma, Eduardo; Brünger, Tobias; Klöckner, Chiara; Platzer, Konrad; Stefansk, Arthur; Montanucci, Ludovica; Bayat, Allan; Radtke, Maximilian; Collins, Ryan; Talkowski, Michael; Blankenberg, Daniel; Møller, Rikke; Lemke, Johannes; Nothnagel, Michael; May, Patrick; Lal, DennisMotivation: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. Results: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research.Publication Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes(2022) Brünger, Tobias; Pérez, Eduardo; Montanucci, Ludovica; Nothnagel, Michael; Møller, Rikke; Schorge, Stephanie; Zuberi, Sameer; Symonds, Joseph; Lemke, Johannes; Brunklaus, Andreas; Traynelis, Stephen; May, Patrick; Lal, DennisClinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.Publication Delineation of functionally essential protein regions for 242 neurodevelopmental genes(2022) Iqbal, Sumaiya; Brünger, Tobias; Pérez, Eduardo; Macnee, Marie; Brunklaus, Andreas; Daly, Mark; Campbell, Arthur; Hoksza, David; May, Patrick; Lal, DennisNeurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.Publication Gene variant effects across sodium channelopathies predict function and guide precision therapy(2022) Brunklaus, Andreas; Feng, Tony; Brünger, Tobias; Pérez, Eduardo; Heyne, Henrike; Matthews, Emma; Semsarian, Christopher; Symonds, Joseph; Zuberi, Sameer; Lal, Dennis; Schorge, StephaniePathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).Publication Molecular dynamics simulations reveal molecular mechanisms for the gain and loss of function effects of four SCN2A variants(2024) Bhattarai, Nisha; Montanucci, Ludovica; Brünger, Tobias; Pérez Palma, Eduardo; Martin, William; Smith, Iris; Eng, Charis; Cheng, Feixiong; Helbig, Ingo; Müller, Rikke; Brunklaus, Andreas; Schorge, Stephanie; Lal, DennisSCN2A gene disorders cover a wide range of medical conditions, from epileptic encephalopathies to neurodevelopmental disorders. The variants of these disorders, studied through electrophysiology, show complex behaviors that go beyond simple classification as either gain or loss of function. In our study, we simulated the biophysical effects of variants (R937C, V208E, S1336Y, and R853Q) to understand their impact. Our findings reveal that all these variants negatively affect the structural stability of the gene, with R937C being the most unstable. Specifically, R937C disrupts important charged interactions affecting sodium ion flow, while S1336Y introduces a new interaction that impacts the channel’s inactivation gate. Conversely, the variants V208E and R853Q, which are located in the voltage-sensing domains, have opposite effects: R853Q increases compactness and interaction, whereas V208E shows a decrease. Our computer-based method offers a scalable way to gain crucial insights into how genetic variants influence channel dysfunction and contribute to neurodevelopmental disorders.Publication Quantitative Phenotype Morbidity Description of SATB2 - Associated Syndrome(2023) Zarate, Yuri; Bosanko, Katherine; Kannan, Amrit; Thomason, Ashlen; Nutt, Beth; Kumar, Nihit; Simmons, Kirt; Hiegert, Aaron; Hartzell, Larry; Johnson, Adam; Prater, Tabitha; Pérez Palma, Eduardo; Brünger, Tobias; Stefanski, Arthur; Lal, Dennis; Caffrey, AislingCharacterized by developmental delay with severe speech delay, dental anomalies, cleft palate, skeletal abnormalities, and behavioral difficulties, SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2. The SAS phenotype range of severity has been documented previously in large series. Using data from the SAS registry, we present the SAS severity score, a comprehensive scoring rubric that encompasses 15 different individual neurodevelopmental and systemic features. Higher (more severe) systemic and total (sum of neurodevelopmental and systemic scores) scores were seen for null variants located after amino acid 350 (the start of the CUT1 domain), the recurrent missense Arg389Cys variant (n=10), intragenic deletions, and larger chromosomal deletions. The Arg389Cys variant had the highest cognitive, verbal, and sialorrhea severity scores, while large chromosomal deletions had the highest expressive, ambulation, palate, feeding and growth, neurodevelopmental, and total scores. Missense variants not located in the CUT1 or CUT2 domain scored lower in several subcategories. We conclude that the SAS severity score allows quantitative phenotype morbidity description that can be used in routine clinical counseling. Further refinement and validation of the SAS severity score are expected over time. All data from this project can be interactively explored in a new portal.Publication SLC6A1 variant pathogenicity, molecular function and phenotype: a genetic and clinical analysis(2023) Stefanski, Arthur; Pérez Palma, Eduardo; Brünger, Tobias; Montanucci, Ludovica; Gati, Cornelius; Klöckner, Chiara; Johannesen, Katrine; Goodspeed, Kimberly; Macnee, Marie; Deng, Alexander; Aledo, Ángel; Borovikov,Artem; Kava, Maina; Bouman, Arjan; Hajianpour, M.; Pal, Deb; Engelen, Marc; Hagebeuk, Eveline; Shinawi, Marwan; Heidlebaugh, Alexis; Oetjens, Kathryn; Hoffman, Trevor; Striano, Pasquale; Freed, Amanda; Futtrup, Line; Balslev, Thomas; Abulí, Anna; Danvoye, Leslie; Lederer, Damien; Balci, Tugce; Nabavi, Maryam; Butler, Elizabeth; Drewes, Sarah; Van Engelen, Kalene; Howell, Katherine; Khoury, Jean; May, Patrick; Trinidad, Marena; Froelich, Steven; Lemke, JohannesGenetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).Publication The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications(2022) Brunklaus, Andreas; Brünger, Tobias; Feng, Tony; Fons, Carmen; Lehikoinen, Anni; Panagiotakaki, Eleni; Vintan, Mihaela; Symonds, Joseph; Andrew, James; Arzimanoglou, Alexis; Delima, Sarah; Gallois, Julie; Hanrahan, Donncha; Lesca, Gaetan; MacLeod, Stewart; Marjanovic, Dragan; McTague, Amy; Nuñez, Noemi; Pérez, Eduardo; Perry, Michael; Pysden, Karen; Russ, Sophie; Scheffer, Ingrid; Sully, Krystal; Syrbe, Steffen; Vaher, Ulvi; Velayutham, Murugan; Vogt, Julie; Weiss, Shelly; Wirrell, Elaine; Zuberi, Sameer; Lal, Dennis; Møller, Rikke; Mantegazza, Massimo; Cestèle, SandrineBrain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.