Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhattarai, Nisha"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Molecular dynamics simulations reveal molecular mechanisms for the gain and loss of function effects of four SCN2A variants
    (2024) Bhattarai, Nisha; Montanucci, Ludovica; Brünger, Tobias; Pérez Palma, Eduardo; Martin, William; Smith, Iris; Eng, Charis; Cheng, Feixiong; Helbig, Ingo; Müller, Rikke; Brunklaus, Andreas; Schorge, Stephanie; Lal, Dennis
    SCN2A gene disorders cover a wide range of medical conditions, from epileptic encephalopathies to neurodevelopmental disorders. The variants of these disorders, studied through electrophysiology, show complex behaviors that go beyond simple classification as either gain or loss of function. In our study, we simulated the biophysical effects of variants (R937C, V208E, S1336Y, and R853Q) to understand their impact. Our findings reveal that all these variants negatively affect the structural stability of the gene, with R937C being the most unstable. Specifically, R937C disrupts important charged interactions affecting sodium ion flow, while S1336Y introduces a new interaction that impacts the channel’s inactivation gate. Conversely, the variants V208E and R853Q, which are located in the voltage-sensing domains, have opposite effects: R853Q increases compactness and interaction, whereas V208E shows a decrease. Our computer-based method offers a scalable way to gain crucial insights into how genetic variants influence channel dysfunction and contribute to neurodevelopmental disorders.
  • Loading...
    Thumbnail Image
    Publication
    The genomic landscape across 474 surgically accessible epileptogenic human brain lesions
    (2022) López, Javier; Leu, Costin; Macnee, Marie; Khoury, Jean; Hoffmann, Lucas; Coras, Roland; Kobow, Katja; Bhattarai, Nisha; Pérez, Eduardo; Hamer, Hajo; Brandner, Sebastian; Rössler, Karl; Bien, Christian; Kalbhenn, Thilo; Pieper, Tom; Hartlieb, Till; Butler, Elizabeth; Genovese, Giulio; Becker, Kerstin; Altmüller, Janine; Niestroj, Lisa; Ferguson, Lisa; Busch, Robyn; Nürnberg, Peter; Najm, Imad; Blümcke, Ingmar; Lal, Dennis
    Understanding the exact molecular mechanisms involved in the etiology of epileptogenic pathologies with or without tumor activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants (SNV) in low-grade epilepsy-associated tumors (LEAT; 7.92 ± 5.65 SNV) than in brain tissue from malformations of cortical development (MCD; 6.11 ± 4 SNV) or hippocampal sclerosis (HS; 5.1 ± 3.04 SNV). Tumor tissues also had the largest number of likely pathogenic variant carrying cells. LEAT had the highest proportion of samples with one or more somatic copy number variants (CNV; 24.7%), followed by MCD (5.4%) and HS (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among LEAT. For germline variant-associated MCD genes such as TSC2, DEPDC5, and PTEN, germline SNV were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in twelve established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the etiology of LEAT (e.g., BRAF) and MCD (e.g., SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with LEAT and NRAS Q61 mutated protein with a complex MCD characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical genetic analyses showed that the numbers of somatic SNV across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with LEAT. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening, and guides future directions for clinical implementation of epilepsy surgery genetics.

Santiago

Av. La Plaza Nº 680, Las Condes

Concepción

Ainavillo Nº 456, Concepción

Logo Universidad del Desarrollo

Implementado por OpenGeek Services