Identification of genetic modifiers of murine hepatic β-glucocerebrosidase activity
Date
2021
Type:
Article
item.page.extent
item.page.accessRights
item.contributor.advisor
ORCID:
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.isbn
item.page.issn
item.page.issne
item.page.doiurl
item.page.other
item.page.references
Abstract
The acid β-glucocerebrosidase (GCase) enzyme cleaves glucosylceramide into glucose and ceramide. Loss of function variants in the gene encoding for GCase can lead to Gaucher disease and Parkinson’s disease. Therapeutic strategies aimed at increasing GCase activity by targeting a modulating factor are attractive and poorly explored. To identify genetic modifiers, we measured hepatic GCase activity in 27 inbred mouse strains. A genome-wide association study (GWAS) using GCase activity as a trait identified several candidate modifier genes, including Dmrtc2 and Arhgef1 (p=2.1x10− 7 ), and Grik5 (p=2.1x10− 7 ). Bayesian integration of the gene mapping with transcriptomics was used to build integrative networks. The analysis uncovered additional candidate GCase regulators, highlighting modules of the acute phase response (p=1.01x10− 8 ), acute inflammatory response (p=1.01x10− 8 ), fatty acid beta-oxidation (p=7.43x10− 5 ), among others. Our study revealed previously unknown candidate modulators of GCase activity, which may facilitate the design of therapies for diseases with GCase dysfunction.
Description
item.page.coverage.spatial
item.page.sponsorship
Citation
Biochemistry and Biophysics Reports, 2021, vol.28: 101105
Keywords
Systems genetics, Modifier genes, β-glucocerebrosidase, Inbred strains, Gaucher disease, Parkinson’s disease