Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair

dc.contributor.authorBenavente, Francisca
dc.contributor.authorPiltti, Katja M.
dc.contributor.authorHooshmand, Mitra J.
dc.contributor.authorNava, Aileen A.
dc.contributor.authorLakatos, Anita
dc.contributor.authorFeld, Brianna G.
dc.contributor.authorCreasman, Dana
dc.contributor.authorGershon, Paul D.
dc.contributor.authorAnderson, Aileen
dc.date.accessioned2021-07-27T16:08:06Z
dc.date.available2021-07-27T16:08:06Z
dc.date.issued2020-09
dc.description.abstractC1q plays a key role as a recognition molecule in the immune system, driving autocatalytic complement cascade activation and acting as an opsonin. We have previously reported a non-immune role of complement C1q modulating the migration and fate of human neural stem cells (hNSC); however, the mechanism underlying these effects has not yet been identified. Here, we show for the first time that C1q acts as a functional hNSC ligand, inducing intracellular signaling to control cell behavior. Using an unbiased screening strategy, we identified five transmembrane C1q signaling/receptor candidates in hNSC (CD44, GPR62, BAI1, c-MET, and ADCY5). We further investigated the interaction between C1q and CD44 , demonstrating that CD44 mediates C1q induced hNSC signaling and chemotaxis in vitro, and hNSC migration and functional repair in vivo after spinal cord injury. These results reveal a receptor-mediated mechanism for C1q modulation of NSC behavior and show that modification of C1q receptor expression can expand the therapeutic window for hNSC transplantation.es
dc.identifier.citationeLife, 2020 september, vol.9:e55732es
dc.identifier.urihttps://doi.org/10.7554/eLife.55732es
dc.identifier.urihttp://hdl.handle.net/11447/4199
dc.language.isoenes
dc.subjectComplement C1qes
dc.subjectMousees
dc.subjectNeural stem cell transplantses
dc.subjectRegenerative medicinees
dc.subjectSpinal cord injuryes
dc.subjectStem cellses
dc.titleNovel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepaires
dc.typeArticlees

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair (1).pdf
Size:
4.35 MB
Format:
Adobe Portable Document Format
Description:
Texto completo
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: