Nanoparticle-induced inflammation can increase tumor malignancy

item.page.isbn

item.page.issn

item.page.issne

item.page.doiurl

item.page.other

item.page.references

Abstract

Nanomaterials, such as aluminum oxide, have been regarded with high biomedical promise as potential immune adjuvants in favor of their bulk counterparts. For pathophysiological conditions where elevated immune activity already occurs, the contribution of nanoparticle-activated immune reactions remains unclear. Here, we investigated the effect of spherical and wire-shaped aluminum oxide nanoparticles on primary splenocytes and observed a clear pro-inflammatory effect of both nanoparticles, mainly for the high aspect ratio nanowires. The nanoparticles resulted in a clear activation of NLRP3 inflammasome, and also secreted transforming growth factor b. When cancer cells were exposed to these cytokines, this resulted in an increased level of epithelial-to-mesenchymal-transition, a hallmark for cancer metastasis, which did not occur when the cancer cells were directly exposed to the nanoparticles themselves. Using a syngeneic tumor model, the level of inflammation and degree of lung metastasis were significantly increased when the animals were exposed to the nanoparticles, particularly for the nanowires. This effect could be abrogated by treating the animals with inflammatory inhibitors. Collectively, these data indicate that the interaction of nanoparticles with immune cells can have secondary effects that may aggravate pathophysiological conditions, such as cancer malignancy, and conditions must be carefully selected to finely tune the induced aspecific inflammation into cancer-specific antitumor immunity.

Description

item.page.coverage.spatial

item.page.sponsorship

Citation

Manshian BB, Poelmans J, Saini S, Pokhrel S, Grez JJ, Himmelreich U, Mädler L, Soenen SJ. Nanoparticle-induced inflammation can increase tumor malignancy. Acta Biomater. 2018 Mar 1;68:99-112. doi: 10.1016/j.actbio.2017.12.020.

Keywords

Nanoparticle shape, Inflammation, Tumor metastasis, Aluminum oxide nanoparticles

item.page.dc.rights

item.page.dc.rights.url