Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test
dc.contributor.author | Eyheramendy, Susana | |
dc.contributor.author | Saa, Pedro A. | |
dc.contributor.author | Undurraga, Eduardo A. | |
dc.contributor.author | Valencia, Carlos | |
dc.contributor.author | López, Carolina | |
dc.contributor.author | Méndez Alcamán, Luis | |
dc.contributor.author | Pizarro-Berdichevsky, Javier | |
dc.contributor.author | Finkelstein-Kulka, Andrés | |
dc.contributor.author | Solari, Sandra | |
dc.contributor.author | Salas, Nicolás | |
dc.contributor.author | Bahamondes, Pedro | |
dc.contributor.author | Ugarte, Martín | |
dc.contributor.author | Barceló, Pablo | |
dc.contributor.author | Arenas, Marcelo | |
dc.contributor.author | Agosin, Eduardo | |
dc.date.accessioned | 2022-04-04T14:54:15Z | |
dc.date.available | 2022-04-04T14:54:15Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75–0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63–0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening. | es |
dc.description.version | Versión Publicada | es |
dc.identifier.citation | Susana Eyheramendy, Pedro A. Saa, Eduardo A. Undurraga, Carlos Valencia, Carolina López, Luis Méndez, Javier Pizarro-Berdichevsky, Andrés Finkelstein-Kulka, Sandra Solari, Nicolás Salas, Pedro Bahamondes, Martín Ugarte, Pablo Barceló, Marcelo Arenas, Eduardo Agosin, Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test, iScience, Volume 24, Issue 12, 2021, 103419, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2021.103419. | es |
dc.identifier.uri | https://doi.org/10.1016/j.isci.2021.103419 | es |
dc.identifier.uri | http://hdl.handle.net/11447/5913 | |
dc.language.iso | en | es |
dc.subject | Diagnostic technique in health technology | es |
dc.subject | Diagnostics | es |
dc.subject | Health technology | es |
dc.subject | Mathematical biosciences | es |
dc.title | Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test | es |
dc.type | Article | es |
dcterms.source | iScience | es |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S2589004221013900-main.pdf
- Size:
- 1.96 MB
- Format:
- Adobe Portable Document Format
- Description:
- Texto completo
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: