Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test

dc.contributor.authorEyheramendy, Susana
dc.contributor.authorSaa, Pedro A.
dc.contributor.authorUndurraga, Eduardo A.
dc.contributor.authorValencia, Carlos
dc.contributor.authorLópez, Carolina
dc.contributor.authorMéndez Alcamán, Luis
dc.contributor.authorPizarro-Berdichevsky, Javier
dc.contributor.authorFinkelstein-Kulka, Andrés
dc.contributor.authorSolari, Sandra
dc.contributor.authorSalas, Nicolás
dc.contributor.authorBahamondes, Pedro
dc.contributor.authorUgarte, Martín
dc.contributor.authorBarceló, Pablo
dc.contributor.authorArenas, Marcelo
dc.contributor.authorAgosin, Eduardo
dc.date.accessioned2022-04-04T14:54:15Z
dc.date.available2022-04-04T14:54:15Z
dc.date.issued2021
dc.description.abstractThe sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75–0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63–0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society's reopening.es
dc.description.versionVersión Publicadaes
dc.identifier.citationSusana Eyheramendy, Pedro A. Saa, Eduardo A. Undurraga, Carlos Valencia, Carolina López, Luis Méndez, Javier Pizarro-Berdichevsky, Andrés Finkelstein-Kulka, Sandra Solari, Nicolás Salas, Pedro Bahamondes, Martín Ugarte, Pablo Barceló, Marcelo Arenas, Eduardo Agosin, Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test, iScience, Volume 24, Issue 12, 2021, 103419, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2021.103419.es
dc.identifier.urihttps://doi.org/10.1016/j.isci.2021.103419es
dc.identifier.urihttp://hdl.handle.net/11447/5913
dc.language.isoenes
dc.subjectDiagnostic technique in health technologyes
dc.subjectDiagnosticses
dc.subjectHealth technologyes
dc.subjectMathematical bioscienceses
dc.titleScreening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory testes
dc.typeArticlees
dcterms.sourceiSciencees

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2589004221013900-main.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Texto completo
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: