Publication:
Automated text-level semantic markers of Alzheimer’s disease

dc.contributor.authorSanz, Camila
dc.contributor.authorCarrillo, Facundo
dc.contributor.authorSlachevsky, Andrea
dc.contributor.authorForno, Gonzalo
dc.contributor.authorGorno, Maria
dc.contributor.authorVillagra, Roque
dc.contributor.authorIbáñez, Agustín
dc.contributor.authorTagliazucch, Enzo
dc.contributor.authorGarcía, Adolfo
dc.date.accessioned2023-07-10T19:34:02Z
dc.date.available2023-07-10T19:34:02Z
dc.date.issued2022
dc.description.abstractIntroduction Automated speech analysis has emerged as a scalable, cost‐effective tool to identify persons with Alzheimer's disease dementia (ADD). Yet, most research is undermined by low interpretability and specificity. Methods Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate ADD patients from healthy controls (HCs) based on automated measures of domains typically affected in ADD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson's disease (PD) patients. Results Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly discriminated between ADD patients and HC, while yielding near‐chance classification between PD patients and HCs. Discussion Automated discourse‐level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well‐established neuropsychological targets with digital assessment tools.
dc.description.versionVersión Publicada
dc.identifier.citationSanz C, Carrillo F, Slachevsky A, Forno G, Gorno Tempini ML, Villagra R, Ibáñez A, Tagliazucchi E, García AM. Automated text-level semantic markers of Alzheimer's disease. Alzheimers Dement (Amst). 2022 Jan 14;14(1):e12276. doi: 10.1002/dad2.12276
dc.identifier.doihttps://doi.org/10.1002/dad2.12276
dc.identifier.urihttps://repositorio.udd.cl/handle/11447/7679
dc.language.isoen
dc.subjectAlzheimer's disease dementia
dc.subjectAutomated speech analysis
dc.subjectParkinson's disease
dc.subjectSemantic granularity
dc.subjectSemantic variability
dc.titleAutomated text-level semantic markers of Alzheimer’s disease
dc.typeArticle
dcterms.accessRightsAcceso Abierto
dcterms.sourceAlzheimer's & dementia : diagnosis, assessment & disease monitoring
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Automated text-level semantic markers of Alzheimer’s disease.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Texto Completo
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: