Publication:
Classification of Alzheimer’s disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: a cross sectional observational study

dc.contributor.authorMaito, Marcelo Adrián
dc.contributor.authorSantamaría-García, Hernando
dc.contributor.authorMoguilner, Sebastián
dc.contributor.authorPossin, Katherine L.
dc.contributor.authorGodoy, María E.
dc.contributor.authorAvila-Funes, José Alberto
dc.contributor.authorBehrens, Maria Isabel
dc.contributor.authorBrusco, Ignacio L. Maira Okada de Oliveira,b,r,s,ae Stefanie D. Pina-Escuder
dc.contributor.authorBruno, Martín A.
dc.contributor.authorCardona, Juan F.
dc.contributor.authorCustodio, Nilton
dc.contributor.authorGarcía, Adolfo M.
dc.contributor.authorJavandel, Shireen
dc.contributor.authorLopera, Francisco
dc.contributor.authorMatallana, Diana L.
dc.contributor.authorMiller, Bruce
dc.contributor.authorOkada de Oliveira, Maira
dc.contributor.authorPina Escudero, Stefanie
dc.contributor.authorSlachevsky Chonchol, Andrea
dc.contributor.authorAna L Sosa Ortiz
dc.contributor.authorTakada, Leonel T.
dc.contributor.authorTagliazuchi, Enzo
dc.contributor.authorValcour, Victor
dc.contributor.authorYokoyama, Jennifer S.
dc.contributor.authorIbañez, Agustín
dc.date.accessioned2024-06-04T15:47:02Z
dc.date.available2024-06-04T15:47:02Z
dc.date.issued2023
dc.description.abstractBackground Global brain health initiatives call for improving methods for the diagnosis of Alzheimer’s disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region.
dc.description.versionVersión publicada
dc.format.extent14 p.
dc.identifier.citationMaito MA, Santamaría-García H, Moguilner S, Possin KL, Godoy ME, Avila-Funes JA, Behrens MI, Brusco IL, Bruno MA, Cardona JF, Custodio N, García AM, Javandel S, Lopera F, Matallana DL, Miller B, de Oliveira MO, Pina-Escudero SD, Slachevsky A, Ortiz ALS, Takada LT, Tagliazuchi E, Valcour V, Yokoyama JS, Ibañez A. Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study. Lancet Reg Health Am. 2023 Jan;17:100387. doi: 10.1016/j.lana.2022.100387.
dc.identifier.doihttps://doi.org/10.1016/j.lana.2022.100387
dc.identifier.urihttps://hdl.handle.net/11447/9011
dc.language.isoen
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 Chile (CC BY-NC-SA 3.0 CL)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/cl/
dc.titleClassification of Alzheimer’s disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: a cross sectional observational study
dc.typeArticle
dcterms.accessRightsAcceso abierto
dcterms.sourceThe Lancet Regional Health - Americas
dspace.entity.typePublication
relation.isAuthorOfPublicationb0cb6d05-60d8-4c6f-96ed-e0bd1460aa3c
relation.isAuthorOfPublicatione25c3d3e-63b5-4e04-951a-12a4989aa772
relation.isAuthorOfPublication.latestForDiscoveryb0cb6d05-60d8-4c6f-96ed-e0bd1460aa3c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2667193X22002046-main.pdf
Size:
1012.18 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
347 B
Format:
Item-specific license agreed upon to submission
Description: