Publication:
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

dc.contributor.authorChanda, Tirtha
dc.contributor.authorHauser, Katja
dc.contributor.authorHobelsberger, Sarah
dc.contributor.authorBucher, Tabea-Clara
dc.contributor.authorNogueira Garcia, Carina
dc.contributor.authorWies, Christoph
dc.contributor.authorKittler, Harald
dc.contributor.authorTschandl, Philipp
dc.contributor.authorNavarrete-Dechent, Cristian
dc.contributor.authorPodlipnik, Sebastian
dc.contributor.authorChousakos, Emmanouil
dc.contributor.authorCrnaric, Iva
dc.contributor.authorMajstorovic, Jovana
dc.contributor.authorLinda Alhajwan, Linda
dc.contributor.authorForeman, Tanya
dc.contributor.authorSandra Peternel, Sandra
dc.contributor.authorSarap, Sergei
dc.contributor.authorÖzdemir, Irem
dc.contributor.authorBarnhill, Raymond L.
dc.contributor.authorLlamas-Velasco , Mar
dc.contributor.authorPoch, Gabriela
dc.contributor.authorKorsing, Sören
dc.contributor.authorSondermann, Wiebke
dc.contributor.authorFriedrich Gellrich, Frank
dc.contributor.authorHeppt, Markus V.
dc.contributor.authorErdmann, Michael
dc.contributor.authorHaferkamp, Sebastian
dc.contributor.authorDrexler, Konstantin
dc.contributor.authorGoebeler, Matthias
dc.contributor.authorSchilling, Bastian
dc.contributor.authorUtikal, Jochen S.
dc.contributor.authorGhoreschi, Kamran
dc.contributor.authorStefan Fröhling, Stefan
dc.contributor.authorKrieghoff-Henning, Eva
dc.contributor.authorReader Study Consortium
dc.contributor.authorBrinker, Titus J.
dc.contributor.authorSalava, Alexander
dc.contributor.authorThiem, Alexander
dc.contributor.authorAlexandris, Dimitrios
dc.contributor.authorMohammad Ammar, Amr
dc.contributor.authorAndreani Figueroa, Juan Sebastián
dc.date.accessioned2025-01-08T17:00:05Z
dc.date.available2025-01-08T17:00:05Z
dc.date.issued2024
dc.description.abstractArtificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic.
dc.description.versionVersión publicada
dc.format.extent17 p.
dc.identifier.citationChanda T, Hauser K, Hobelsberger S, Bucher TC, Garcia CN, Wies C, Kittler H, Tschandl P, Navarrete-Dechent C, Podlipnik S, Chousakos E, Crnaric I, Majstorovic J, Alhajwan L, Foreman T, Peternel S, Sarap S, Özdemir İ, Barnhill RL, Llamas-Velasco M, Poch G, Korsing S, Sondermann W, Gellrich FF, Heppt MV, Erdmann M, Haferkamp S, Drexler K, Goebeler M, Schilling B, Utikal JS, Ghoreschi K, Fröhling S, Krieghoff-Henning E; Reader Study Consortium; Brinker TJ. Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma. Nat Commun. 2024 Jan 15;15(1):524. doi: 10.1038/s41467-023-43095-4
dc.identifier.doihttps://doi.org/10.1038/s41467-023-43095-4
dc.identifier.urihttps://hdl.handle.net/11447/9583
dc.language.isoen
dc.subjectArtificial Intelligence
dc.subjectDermatologists
dc.subjectDiagnosis
dc.subjectDifferential
dc.subjectHumans
dc.subjectMelanoma / diagnosis
dc.subjectTrust
dc.titleDermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
dc.title.alternativeEndovascular management of common hepatic artery aneurysm
dc.typeArticle
dcterms.accessRightsAcceso abierto
dcterms.sourceNature communications
dspace.entity.typePublication

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41467_2023_Article_43095.pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
347 B
Format:
Item-specific license agreed upon to submission
Description: