Person: SALAZAR SANDOVAL, SEBASTIAN ANDRES
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SALAZAR SANDOVAL
First Name
SEBASTIAN ANDRES
Name
3 results
¿Qué estás buscando?
Search Results
Now showing 1 - 3 of 3
Publication Advances in the Sustainable Development of Biobased Materials Using Plant and Animal Waste as Raw Materials: A Review(2024) SALAZAR SANDOVAL, SEBASTIAN ANDRES; Amenábar, Alejandra; Toledo, Ignacio; Silva, Nataly; Contreras, PaulinaThere is substantial concern about critical environmental problems related to waste in production sectors such as textile, construction, and packaging. The materials ascribed to the sector’s unsustainability are primarily fabrics, plastic, and hazardous solvents, making developing new biobased materials imperative. As such, various strategies have been investigated to convert and recycle waste and give them commercial value via the manufacture of biobased materials. This review discusses the various types of raw materials as sources to develop new biobased materials that could promote the transition toward sustainability. According to the literature, the functional qualities of biobased materials are comparable to those of synthetic materials. Raw material sources such as biomass, derived from plant and animal-based waste, are attractive due to their low cost, abundance, and biodegradability. The manufacture of biomaterials, as well as their characterization and performance, are also discussed. Further, this review will offer a comprehensive view of the potential applicability and current commercial applications of the developed biobased materials in relevant areas such as packaging, construction, textile, and wastewater remediation. This could be a potential field of research to address the environmental challenges posed by the continuous growth of the global population.Publication Controlled Release of the Anticancer Drug Cyclophosphamide from a Superparamagnetic β‑Cyclodextrin Nanosponge by Local Hyperthermia Generated by an Alternating Magnetic Field(2024) SALAZAR SANDOVAL, SEBASTIAN ANDRES; Díaz-Saldívar, Patricia; Araya, Ingrid; Celis, Freddy; Cortés-Arriagada, Diego; Riveros, Ana; Rojas-Romo, Carlos; Jullian, Carolina; Silva, Nataly; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paulβ-cyclodextrin (β-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association. The association of the MNPs with the NSs-drug complex was confirmed through field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, ζ-potential, atomic absorption spectroscopy, X-ray powder diffraction, selected area electron diffraction, and vibrating-sample magnetometer. The superparamagnetic properties of the ternary system allowed the release of CYC by utilizing magnetic hyperthermia upon the exposure of an alternating magnetic field (AMF). The drug release experiments were carried out at different frequencies and intensities of the magnetic field, complying with the “Atkinson−Brezovich criterion”. The assays in AMF showed the feasibility of release by controlling hyperthermia of the drug, finding that the most efficient conditions were F = 280 kHz, H = 15 mT, and a concentration of MNPs of 5 mg/mL. CYC release was temperature-dependent, facilitated by local heat generation through magnetic hyperthermia. This phenomenon was confirmed by DFT calculations. Furthermore, the ternary systems outperformed the formulations without MNPs regarding the amount of released drug. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrated that including CYC within the magnetic NS cavities reduced the effects on mitochondrial activity compared to those observed with the free drug. Finally, the magnetic hyperthermia assays showed that the tertiary system allows the generation of apoptosis in HeLa cells, demonstrating that the MNPs embedded maintain their properties to generate hyperthermia. These results suggest that using NSs associated with MNPs could be a potential tool for a controlled drug delivery in tumor therapy since the materials are efficient and potentially nontoxic.Publication Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic(2025) Moglia, Italo; Santiago, Margarita; Arellano, Andreas; SALAZAR SANDOVAL, SEBASTIAN ANDRES; Olivera-Nappa, Alvaro; Kogan, Marcelo J.; Soler, MónicaDumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles’ synthesis. We present the development of an opto-magnetic nanostructures using the ferritin protein, wherein gold and iron oxide nanostructures were produced within its cavity. Initially, we investigated the synthesis of gold nanostructures within the protein, generating clusters and plasmonic nanoparticles. Subsequently, we optimized the conditions for the superparamagnetic nanoparticles synthesis through controlled iron oxidation, thereby enhancing the magnetic properties of the resulting system. Finally, we produce magnetic nanoparticles in the protein with gold clusters, achieving the coexistence of both nanostructures within a single protein molecule, a novel material unprecedented to date. We observed that factors such as temperature, metal/protein ratios, pH, dialysis, and purification processes all have an impact on protein recovery, loading efficiency, morphology, and nanoparticle size. Our findings highlight the development of ferritin-based nanomaterials as versatile platforms for potential biomedical use as multifunctional theranostic agents.