Person: Slachevsky Chonchol, Andrea
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Slachevsky Chonchol
First Name
Andrea
Name
Andrea María Slachevsky Conchol
5 results
¿Qué estás buscando?
Search Results
Now showing 1 - 5 of 5
Publication The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds(2023) Prado, Pavel; Medel, Vicente; Gonzalez, Raul; Sainz, Agustín; Vidal , Victor; Santamaría, Hernando; Moguilner, Sebastian; Mejia, Jhony; Slachevsky Chonchol, Andrea; Behrens, Maria; Aguillon, David; Lopera, Francisco; Parra, Mario; Matallana,Diana; Maito, Marcelo; Garcia, Adolfo; Custodio, Nilton; Ávila, Alberto; Piña, Stefanie; Birba, Agustina; Fittipaldi, Sol; Legaz, Agustina; Ibañez, AgustínThe Latin American Brain Health Institute (BrainLat) has released a unique multimodal neuroimaging dataset of 780 participants from Latin American. The dataset includes 530 patients with neurodegenerative diseases such as Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS), Parkinson's disease (PD), and 250 healthy controls (HCs). This dataset (62.7 ± 9.5 years, age range 21-89 years) was collected through a multicentric effort across five Latin American countries to address the need for affordable, scalable, and available biomarkers in regions with larger inequities. The BrainLat is the first regional collection of clinical and cognitive assessments, anatomical magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), diffusion-weighted MRI (DWI), and high density resting-state electroencephalography (EEG) in dementia patients. In addition, it includes demographic information about harmonized recruitment and assessment protocols. The dataset is publicly available to encourage further research and development of tools and health applications for neurodegeneration based on multimodal neuroimaging, promoting the assessment of regional variability and inclusion of underrepresented participants in research.Publication Multimodal mechanisms of human sociallyreinforced learning across neurodegenerative diseases(2022) Legaz, Agustina; Abrevaya, Sofía; Dottori, Martín; González, Cecilia; Birba, Agustina; Martorell, Miguel; Aguirre, Julieta; Slachevsky Chonchol, Andrea; Aranguiz, Rafael; Serrano, Cecilia; Gillan, Claire; Leroi, Iracema; García, Adolfo; Fittipaldi, Sol; Ibañez, AgustínSocial feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled with multimodal brain measures, can complement standard approaches by revealing direct multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson's disease (n = 31) and Alzheimer's disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning and associative learning, respectively, although all three domains may be partly compromised in the other conditions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal negativity) and offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and Parkinson's disease, while unspecific learning deficits (across social and non-social conditions) were observed in Alzheimer's disease. EEG results showed increased medial frontal negativity in healthy controls during social feedback and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia. Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predominantly fronto-limbic regions in Alzheimer's disease. In contrast, non-socially reinforced learning was consistently linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson's disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle disruptions in ongoing feedback-mechanisms and social processes in Parkinson's disease and generalized learning alterations in Alzheimer's disease. This multimodal approach highlights the impact of different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced learning and neurodegeneration.Publication Multi-feature computational framework for combined signatures of dementia in underrepresented settings(2022) Moguilner, Sebastián; Birba, Agustina; Fittipaldi, Sol; Gonzalez, Cecilia; Tagliazucchi, Enzo; Reyes, Pablo; Matallana, Diana; Parra, Mario; Slachevsky Chonchol, Andrea; Farías, Gonzalo; Cruzat, Josefina; García, Adolfo; Eyre, Harris; La Joie, Renaud; Rabinovici, Gil; Whelan, Robert; Ibáñez, AgustínObjective.The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) remains challenging in underrepresented, underdiagnosed groups, including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary approaches are required in clinical settings.Approach. We developed a novel framework based on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach (combining demographic, neuropsychological, magnetic resonance imaging (MRI), and electroencephalography/functional MRI connectivity data) to characterize neurodegeneration using site harmonization and sequential feature selection. We assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat).Main results. The multimodal model yielded high area under the curve classification values (bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal markers (from thousands to dozens).Results. Proved robust against multimodal heterogeneity, sociodemographic variability, and missing data.Significance. The model accurately identified dementia subtypes using measures readily available in underrepresented settings, with a similar performance than advanced biomarkers. This approach, if confirmed and replicated, may potentially complement clinical assessments in developing countriesPublication Allostatic-Interoceptive Overload in Frontotemporal Dementia(2022) Birba, Agustina; Santamaría-García, Hernando; Prado, Pavel; Cruzat, Josefina; Sainz Ballesteros , Agustín; Legaz , Agustina; Fittipaldi, Sol; Duran-Aniotz , Claudia; Slachevsky Chonchol, Andrea; Santibañez , Rodrigo; Sigman , Mariano; M. García , Adolfo; Whelan , Robert; Moguilner , Sebastián; Ibáñez , AgustínBackground : The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. Methods : We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer’s disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). Results : Relative to healthy control subjects and patients with Alzheimer’s disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients’ cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. Conclusions : Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.Publication Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia(2023) Díaz-Rivera, Mariano N.; Birba, Agustina; Fittipaldi, Sol; Mola, Débora; Morera, Yurena; Vega, Manuel de; Moguilner, Sebastian; Lillo, Patricia; Slachevsky Chonchol, Andrea; González Campo, Cecilia; Ibáñez, Agustín; García, Adolfo M.Background Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. Methods Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. Results In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2–3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. Discussion These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.