Person:
Orellana Villena, Viviana

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Orellana Villena

First Name

Viviana

Name

¿Qué estás buscando?



Search Results

Now showing 1 - 1 of 1
  • Publication
    Cx40 Levels Regulate Hypoxia-Induced Changes in the Migration, Proliferation, and Formation of Gap Junction Plaques in an Extravillous Trophoblast Cell Model
    (2024) Rozas Villanueva, María Fernanda; Orellana Villena, Viviana; Alarcón, Rodrigo; Maripillan, Jaime; Martínez, Agustín; Alfaro, Ivan; Retamal, Mauricio A.
    Background: Extravillous trophoblasts (EVTs) form stratified columns at the placenta–uterus interface. In the closest part to fetal structures, EVTs have a proliferative phenotype, whereas in the closest part to maternal structures, they present a migratory phenotype. During the placentation process, Connexin 40 (Cx40) participates in both the proliferation and migration of EVTs, which occurs under hypoxia. However, a possible interaction between hypoxia and Cx40 has not yet been established. Methods: We developed two cellular models, one with “low Cx40” (Jeg-3), which reflected the expression of this protein found in migratory EVTs, and one with “high Cx40” (Jeg-3/hCx40), which reflected the expression of this protein in proliferative cells. We analyzed the migration and proliferation of these cells under normoxic and hypoxic conditions for 24 h. Jeg-3 cells under hypoxia increased their migratory capacity over their proliferative capacity. However, in Jeg-3/hCx40, the opposite effect was induced. On the other hand, hypoxia promoted gap junction (GJ) plaque formation between neighboring Jeg-3 cells. Similarly, the activation of a nitro oxide (NO)/cGMP/PKG-dependent pathway induced an increase in GJ-plaque formation in Jeg-3 cells. Conclusions: The expression patterns of Cx40 play a crucial role in shaping the responses of EVTs to hypoxia, thereby influencing their migratory or proliferative phenotype. Simultaneously, hypoxia triggers an increase in Cx40 gap junction (GJ) plaque formation through a pathway dependent on NO