Person:
Billeke, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Billeke

First Name

Pablo

Name

¿Qué estás buscando?



Search Results

Now showing 1 - 3 of 3
  • Publication
    Functional Dizziness as a Spatial Cognitive Dysfunction
    (2024) Breinbauer, Hayo; Stecher, Ximena; Zamorano, Francisco; Billeke, Pablo; Arévalo, Camilo; Villarroel, Karen; Lavin, Claudio; Faúndez, Felipe; Garrido, Rosario; Alarcón, Kevin; Delano, Paul
    (1) Background: Persistent postural-perceptual dizziness (PPPD) is a common chronic dizziness disorder with an unclear pathophysiology. It is hypothesized that PPPD may involve disrupted spatial cognition processes as a core feature. (2) Methods: A cohort of 19 PPPD patients underwent psycho-cognitive testing, including assessments for anxiety, depression, memory, attention, planning, and executive functions, with an emphasis on spatial navigation via a virtual Morris water maze. These patients were compared with 12 healthy controls and 20 individuals with other vestibular disorders but without PPPD. Vestibular function was evaluated using video head impulse testing and vestibular evoked myogenic potentials, while brain magnetic resonance imaging was used to exclude confounding pathology. (3) Results: PPPD patients demonstrated unique impairments in allocentric spatial navigation (as evidenced by the virtual Morris water maze) and in other high-demand visuospatial cognitive tasks that involve executive functions and planning, such as the Towers of London and Trail Making B tests. A factor analysis highlighted spatial navigation and advanced visuospatial functions as being central to PPPD, with a strong correlation to symptom severity. (4) Conclusions: PPPD may broadly impair higher cognitive functions, especially in spatial cognition. We discuss a disruption in the creation of enriched cognitive spatial maps as a possible pathophysiology for PPPD
  • Publication
    Us versus them mentality in football fans: Significant social defeat engages the mentalization network and disengages cognitive control areas [version 1; peer review: awaiting peer review]
    (2023) Zamorano, Francisco; Patricio Carvajal-Paredes; Soto-Icaza, Patricia; Stecher, Ximena; Salinas, César; Muñoz Reyes, José Antonio; López, Vladimir; Méndez, Waldemar; Barrera, Joel; Aragón-Caqueo, Gonzalo; Billeke, Pablo; Carvajal Paredes, Francisco
    Background: Social affiliation is one of the building blocks that shapes cultures and communities. This motivation contributes to the development of social bonding among individuals within a group, enjoying rights, assuming obligations, and strengthening its identity. Evidence has shown that social affiliation has inspired different social phenomena, such as wars, political movements, social struggles, among others, based on two human motivations: the ingroup love and the outgroup hate. One contemporary group to study as a proxy of social affiliation, and ingroup and outgroup motivations is the sports competition. However, this affiliation model has been poorly considered in social neuroscience research. This research aimed to shed light on the neurobiological networks that are related to social affiliation in football fans of two of the most popular Chilean football teams. Methods: To this end, 43 male fans of two football rival teams watched videos of winning and losing goals of their favorite team while their brain activity was measured with functional magnetic resonance imaging (fMRI). Results: The results showed that while the activation of the reward system was observed in fans when their team scores goals against the rival, both the activation of the mentalization network and the inhibition of the dorsal anterior cingulate cortex were associated with the emotional correlates of defeat in football fans. Conclusions: Taking these findings together could contribute to a deeper understanding of social affiliation, and more importantly, of extreme affiliation phenomena, and fanaticism.
  • Publication
    Lateral prefrontal theta oscillations causally drive a computational mechanism underlying conflict expectation and adaptation
    (2024) Martínez-Molina, María Paz; Valdebenito-Oyarzo, Gabriela; Soto-Icaza, Patricia; Zamorano, Francisco; Figueroa-Vargas, Alejandra; Carvajal-Paredes, Patricio; Stecher, Ximena; Salinas, César; Valero-Cabré, Antoni; Polania, Rafael; Billeke, Pablo
    Adapting our behavior to environmental demands relies on our capacity to perceive and manage potential conflicts within our surroundings. While evidence implicates the involvement of the lateral prefrontal cortex and theta oscillations in detecting conflict stimuli, their causal role in conflict expectation remains elusive. Consequently, the exact computations and neural mechanisms underlying these cognitive processes still need to be determined. We employed an integrative approach involving cognitive computational modeling, fMRI, TMS, and EEG to establish a causal link between oscillatory brain function, its neurocomputational role, and the resulting conflict processing and adaptation behavior. Our results reveal a computational process underlying conflict expectation, which correlates with BOLD-fMRI and theta activity in the superior frontal gyrus (SFG). Modulation of theta activity via rhythmic TMS applied over the SFG induces endogenous theta activity, which in turn enhances computations associated with conflict expectation. These findings provide evidence for the causal involvement of SFG theta activity in learning and allocating cognitive resources to address forthcoming conflict stimuli. Similar content being viewe