Person: Acevedo, Johanna
Loading...
Email Address
Birth Date
2 results
¿Qué estás buscando?
Search Results
Now showing 1 - 2 of 2
Publication Serological study of CoronaVac vaccine and booster doses in Chile: immunogenicity and persistence of anti-SARS-CoV-2 spike antibodies(2022) Vargas, Leonardo; Valdivieso, Nicolás; Tempio, Fabián; Simon, Valeska; Sauma, Daniela; Valenzuela, Lucía; Beltrán, Caroll; Castillo- Delgado, Loriana; Contreras-Benavides, Ximena; Acevedo, Mónica L.; Acevedo, Johanna; Gonzalez, Rafael I.; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo; Rosemblatt, Mario; López, Mercedes; Osorio, Fabiola; Bono, María RosaBackground: Chile was severely affected by COVID19 outbreaks but was also one of the first countries to start a nationwide program to vaccinate against the disease. Furthermore, Chile became one of the fastest countries to inoculate a high percentage of the target population and implemented homologous and heterologous booster schemes in late 2021 to prevent potential immunological waning. The aim of this study is to compare the immunogenicity and time course of the humoral response elicited by the CoronaVac vaccine in combination with homologous versus heterologous boosters. Methods: We compared the immunogenicity of two doses of CoronaVac and BNT162b2 vaccines and one homologous or heterologous booster through an ELISA assay directed against the ancestral spike protein of SARS-CoV-2. Sera were collected from individuals during the vaccination schedule and throughout the implementation of homologous and heterologous booster programs in Chile. Results: Our findings demonstrate that a two-dose vaccination scheme with CoronaVac induces lower levels of anti-SARS-CoV-2 spike antibodies than BNT162b2 in a broad age range (median age 42 years; interquartile range (IQR) 27-61). Furthermore, antibody production declines with time in individuals vaccinated with CoronaVac and less noticeably, with BNT162b2. Analysis of booster schemes revealed that individuals vaccinated with two doses of CoronaVac generate immunological memory against the SARS-CoV-2 ancestral strain, which can be re-activated with homologous or heterologous (BNT162b2 and ChAdOx1) boosters. Nevertheless, the magnitude of the antibody response with the heterologous booster regime was considerably higher (induction fold BNT162b2: 11.2x; ChAdoX1; 12.4x; CoronaVac: 6.0x) than the responses induced by the homologous scheme. Both homologous and heterologous boosters induced persistent humoral responses (median 122 days, IQR (108-133)), although heterologous boosters remained superior in activating a humoral response after 100 days. Conclusions: Two doses of CoronaVac induces antibody titers against the SARS-CoV-2 ancestral strain which are lower in magnitude than those induced by the BNT162b2 vaccine. However, the response induced by CoronaVac can be greatly potentiated with a heterologous booster scheme with BNT162b2 or ChAdOx1 vaccines. Furthermore, the heterologous and homologous booster regimes induce a durable antibody response which does not show signs of decay 3 months after the booster dose.Publication Effectiveness of an inactivated SARS-CoV-2 vaccine in children and adolescents: a large-scale observational study(2023) Jara, Alejandro; Undurraga, Eduardo; Flores, Juan; Zubizarreta, José; González, Cecilia; Pizarro, Alejandra; Ortuño, Duniel; Acevedo, Johanna; Leo, Katherinne; Paredes, Fabio; Bralic , Tomás; Vergara, Verónica; Leon, Francisco; Parot, Ignacio; Leighton, Paulina; Suárez, Pamela; Rios, Juan; García, Heriberto; Rafael Araos; Araos Bralic, Rafael IgnacioBackground: Policymakers urgently need evidence to adequately balance the costs and benefits of mass vaccination against COVID-19 across all age groups, including children and adolescents. In this study, we aim to assess the effectiveness of CoronaVac's primary series among children and adolescents in Chile. Methods: We used a large prospective national cohort of about two million children and adolescents 6-16 years to estimate the effectiveness of an inactivated SARS-CoV-2 vaccine (CoronaVac) in preventing laboratory-confirmed symptomatic SARS-CoV-2 infection (COVID-19), hospitalisation, and admission to an intensive care unit (ICU) associated with COVID-19. We compared the risk of individuals treated with a complete primary immunization schedule (two doses, 28 days apart) with the risk of unvaccinated individuals during the follow-up period. The study was conducted in Chile from June 27, 2021, to January 12, 2022, when the SARS-CoV-2 Delta variant was predominant but other variants of concern were co-circulating, including Omicron. We used inverse probability-weighted survival regression models to estimate hazard ratios of complete immunization over the unvaccinated status, accounting for time-varying vaccination exposure and adjusting for relevant demographic, socioeconomic, and clinical confounders. Findings: The estimated adjusted vaccine effectiveness for the inactivated SARS-CoV-2 vaccine in children aged 6-16 years was 74.5% (95% CI, 73.8-75.2), 91.0% (95% CI, 87.8-93.4), 93.8% (95% CI, 87.8-93.4) for the prevention of COVID-19, hospitalisation, and ICU admission, respectively. For the subgroup of children 6-11 years, the vaccine effectiveness was 75.8% (95% CI, 74.7-76.8) for the prevention of COVID-19 and 77.9% (95% CI, 61.5-87.3) for the prevention of hospitalisation. Interpretation: Our results suggest that a complete primary immunization schedule with the inactivated SARS-CoV-2 vaccine provides effective protection against severe COVID-19 disease for children 6-16 years. Funding: Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program and Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP)