Browsing by Author "de Mayo, Tomas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations(BioMed Central, 2017) Jara, Lilian; Morales, Sebastian; de Mayo, Tomas; Gonzalez, Patricio; Carrasco, Valentina; Godoy, RaulBreast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understand‑ ing of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specifc moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribu‑ tion and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as com‑ pared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 diferent BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.Item Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population(2010) Jara, Lilian; Dubois, Karen; Gaete, Daniel; de Mayo, Tomas; Ratkevicius, Nikalai; Bravo, Teresa; Margarit, Sonia; Blanco, Rafael; Gomez, Fernando; Waugh, Enrique; Peralta, Octavio; Reyes, Jose M.; Ibanez, Gladys; Gonzalez-Hormazabal, PatricioThe double-strand break (DSB) DNA repair pathway has been implicated in breast cancer (BC). RAD51 and its paralogs XRCC3 and RAD51D play an important role in the repair of DSB through homologous recombination (HR). Some polymorphisms including XRCC3-Thr241Met, RAD51-135G[C, and RAD51D-E233G have been found to confer increased BC susceptibility. In order to detect novel mutations that may contribute to BC susceptibility, 150 patients belonging to 150 Chilean BRCA1/2-negative families were screened for mutations in XRCC3. No mutations were detected in the XRCC3 gene. In addition, using a case–control design we studied the XRCC3-Thr241Met, and RAD51D-E233G polymorphisms in 267 BC cases and 500 controls to evaluate their possible association with BC susceptibility. The XRCC3 Met/Met genotype was associated with an increased BC risk (P = 0.003, OR = 2.44 [95%CI 1.34–4.43]). We did not find an association between E233G polymorphism and BC risk. We also analyzed the effect of combined genotypes among RAD51-135G[C, Thr241Met, and E233G polymorphisms on BC risk. No interaction was observed between Thr241Met and 135G[C. The combined genotype Thr/Met–E/G was associated with an increased BC risk among women who (a) have a family history of BC, (b) are BRCA1/2-negative, and (c) were \50 years at onset (n = 195) (P = 0.037, OR = 10.5 [95%CI 1.16–94.5]). Our results suggested that the variability of the DNA HR repair genes XRCC3 and RAD51D may play a role in BC risk, but this role may be underlined by a mutual interaction between these genes. These findings should be confirmed in other populations.