Browsing by Author "Zapata, Patricio"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item How the carotid body works: Different strategies and preparations to solve different problems(Sociedad de Biología de Chile, 2005) Zapata, Patricio; Larraín, CarolinaThis is a review of the different experimental approaches developed to solve the problems in our progress towards a comprehensive understanding of how arterial chemoreceptors operate. An analysis is performed of the bases, advantages and limits of the following preparations: studies of ventilatory reflexes originated from carotid bodies (CBs) in the entire animal; recordings of CB chemosensory discharges in situ; CB preparations perfused in situ; CB explants in oculo; CB explants in ovo; CB preparations incubated in vitro; CB preparations superfused in vitro; CB preparations perfused and superfused in vitro; CB tissue slices in vitro; cells acutely dissociated from CBs; CB cells in tissue culture; petrosal ganglia superfused in vitro; petrosal ganglion cells in tissue culture; and co-cultures of CB and sensory ganglion cells. A brief historical account is given of the passage from one preparation to the next one. Emphasis is placed on personal experience with the different preparations whenever possible. Examples are given of the importance of selecting the appropriate experimental preparation for solving each particular theoretical problem. In fact, brilliant ideas on how the CB works have been unproductive until finding the adequate experimental approach to explore the validity of such ideas.Item Immunosensory signaling by carotid body chemoreceptors(2011) Zapata, Patricio; Larraín, Carolina; Reyes, Pablo; Fernández, RicardoInjections of lipopolysaccharide (LPS) have been used to produce the signs of sepsis and study their underlying mechanisms. Intravenous (IV) injections of LPS in anesthetized cats induce tachypnea, tachycardia and hypotension, but ventilatory changes are suppressed after sectioning carotid and aortic nerves. Otherwise. LPS increases the basal frequency of carotid chemosensory discharges, but reduces ventilatory and chemosensory responses to hypoxia and nicotine injections. Increases in cytokines (IL-1 beta, IL-6 and TNF-alpha) are observed in plasma and tissues after injecting LPS. In carotid bodies perfused in vitro. TNF-alpha reduces chemosensory discharges induced by hypoxia. The rat carotid body and its sensory ganglion constitutively express LPS canonical receptor. TLR4, as well as TNF-alpha and its receptors (TNF-R1 and TNF-R2). Increases of TNF-alpha and TNF-R2 expression occur after LPS administration. The activation of peripheral and central autonomic pathways induced by LPS or IL's is partly dependent on intact vagus nerves. Thus, the carotid and vagus nerves provide routes between the immune system and CNS structures involved in systemic inflammatory responses. (C) 2011 Elsevier B.V. All rights reserved.Item Plasticity of cardiovascular chemoreflexes after prolonged unilateral carotid body denervation: implications for its therapeutic use(2020) Eugenín, Jaime; Larraín, Carolina; Zapata, PatricioUnilateral carotid body denervation has been proposed as treatment for sympathetic-related human diseases such as systolic heart failure, hypertension, obstructive sleep apnea, and cardiometabolic diseases. The long-term therapeutic effects of carotid body removal will be maintained if the remnant “buffer nerves,” that is, the contralateral carotid nerve and the aortic nerves that innervate second-order neurons at the solitary tract nuclei (NTS), do not modify their contributions to the cardiovascular chemoreflexes. Here, we studied the cardiovascular chemoreflexes 1 mo after unilateral carotid body denervation either by excision of the petrosal ganglion (petrosal ganglionectomy, which eliminates central carotid afferents) or exeresis of a segment of one carotid nerve (carotid neurectomy, which preserves central afferents). Cardiovascular chemoreflexes were induced by intravenous (iv) injections of sodium cyanide in pentobarbitone-anesthetized adult cats. After 1 mo of unilateral petrosal ganglionectomy, without significant changes in basal arterial pressure, the contribution of the contralateral carotid nerve to the chemoreflex increases in arterial pressure was enhanced without changes in the contribution provided by the aortic nerves. By contrast, after 1 mo of unilateral carotid neurectomy, the contribution of remnant buffer nerves to cardiovascular chemoreflexes remained unmodified. These results indicate that a carotid nerve interruption involving denervation of second-order chemosensory neurons at the NTS will trigger cardiovascular chemoreflex plasticity on the contralateral carotid pathway. Then, unilateral carotid body denervation as therapeutic tool should consider the maintenance of the integrity of carotid central chemoafferents to prevent plasticity on remnant buffer nerves. NEW & NOTEWORTHY Unilateral carotid body denervation has been proposed as treatment for sympathetic hyperactivity-related human disorders. Its therapeutic effectiveness for maintaining a persistent decrease in the sympathetic outflow activity will depend on the absence of compensatory chemoreflex plasticity in the remnant carotid and aortic afferents. Here, we suggest that the integrity of central afferents after carotid body denervation is essential to prevent the emergence of plastic functional changes on the contralateral “intact” carotid nerve.