Browsing by Author "Tempio, Fabián"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation(Multidisciplinary Digital Publishing Institute (MDPI), 2019) Arce, Maximiliano; Pinto, Mauricio; Galleguillos, Macarena; Muñoz, Catalina; Lange, Soledad; Ramirez, Carolina; Erices, Rafaela; González, Pamela; Velásquez, Ethel; Tempio, Fabián; López, Mercedes; Salazar-Onfray, Flavio; Cautivo, Kelly; Kalergis, Alexis; Cruz, Sebastián; Lobos-González, Lorena; Lladser, Álvaro; Valenzuela, Guillermo; Olivares, Nixa; Sáez, Claudia; Koning, Tania; Sánchez, Fabiola; Fuenzalida, Patricia; Godoy, Alejandro; Contreras, Pamela; Leyton, Lisette; Lugano, Roberta; Dimberg, Anna; Quest, Andrew; Owen, GarethHypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.Item Melanocytes and melanin represent a first line of innate immunity against Candida albicans(International Society for Human and Animal Mycology, 2014) Tapia, Cecilia; Falconer, Maryanne; Tempio, Fabián; Falcón, Felipe; López, Mercedes; Fuentes, Marisol; Alburquenque, Claudio; Amaro, José; Bucarey, Sergio; Di Nardo, AnnaMelanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection.Publication Serological study of CoronaVac vaccine and booster doses in Chile: immunogenicity and persistence of anti-SARS-CoV-2 spike antibodies(2022) Vargas, Leonardo; Valdivieso, Nicolás; Tempio, Fabián; Simon, Valeska; Sauma, Daniela; Valenzuela, Lucía; Beltrán, Caroll; Castillo- Delgado, Loriana; Contreras-Benavides, Ximena; Acevedo, Mónica L.; Acevedo, Johanna; Gonzalez, Rafael I.; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo; Rosemblatt, Mario; López, Mercedes; Osorio, Fabiola; Bono, María RosaBackground: Chile was severely affected by COVID19 outbreaks but was also one of the first countries to start a nationwide program to vaccinate against the disease. Furthermore, Chile became one of the fastest countries to inoculate a high percentage of the target population and implemented homologous and heterologous booster schemes in late 2021 to prevent potential immunological waning. The aim of this study is to compare the immunogenicity and time course of the humoral response elicited by the CoronaVac vaccine in combination with homologous versus heterologous boosters. Methods: We compared the immunogenicity of two doses of CoronaVac and BNT162b2 vaccines and one homologous or heterologous booster through an ELISA assay directed against the ancestral spike protein of SARS-CoV-2. Sera were collected from individuals during the vaccination schedule and throughout the implementation of homologous and heterologous booster programs in Chile. Results: Our findings demonstrate that a two-dose vaccination scheme with CoronaVac induces lower levels of anti-SARS-CoV-2 spike antibodies than BNT162b2 in a broad age range (median age 42 years; interquartile range (IQR) 27-61). Furthermore, antibody production declines with time in individuals vaccinated with CoronaVac and less noticeably, with BNT162b2. Analysis of booster schemes revealed that individuals vaccinated with two doses of CoronaVac generate immunological memory against the SARS-CoV-2 ancestral strain, which can be re-activated with homologous or heterologous (BNT162b2 and ChAdOx1) boosters. Nevertheless, the magnitude of the antibody response with the heterologous booster regime was considerably higher (induction fold BNT162b2: 11.2x; ChAdoX1; 12.4x; CoronaVac: 6.0x) than the responses induced by the homologous scheme. Both homologous and heterologous boosters induced persistent humoral responses (median 122 days, IQR (108-133)), although heterologous boosters remained superior in activating a humoral response after 100 days. Conclusions: Two doses of CoronaVac induces antibody titers against the SARS-CoV-2 ancestral strain which are lower in magnitude than those induced by the BNT162b2 vaccine. However, the response induced by CoronaVac can be greatly potentiated with a heterologous booster scheme with BNT162b2 or ChAdOx1 vaccines. Furthermore, the heterologous and homologous booster regimes induce a durable antibody response which does not show signs of decay 3 months after the booster dose.