Browsing by Author "Stehberg, Jimmy"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item 4-Hydroxynonenal induces Cx46 hemichannel inhibition through its carbonylation(2020) Retamal, Mauricio; Fiori, Mariana C.; Fernández-Olivares, Ainoa; Linsambarth, Sergio; Peña, Francisca; Quintana, Daisy; Stehberg, Jimmy; Altenberg, Guillermo A.Hemichannels formed by connexins mediate the exchange of ions and signaling molecules between the cytoplasm and the extracellular milieu. Under physiological conditions hemichannels have a low open probability, but in certain pathologies their open probability increases, which can result in cell damage. Pathological conditions are characterized by the production of a number of proinflammatory molecules, including 4-hydroxynonenal (4-HNE), one of the most common lipid peroxides produced in response to inflammation and oxidative stress. The aim of this work was to evaluate whether 4-HNE modulates the activity of Cx46 hemichannels. We found that 4-HNE (100 μM) reduced the rate of 4′,6-diamino-2-fenilindol (DAPI) uptake through hemichannels formed by recombinant human Cx46 fused to green fluorescent protein, an inhibition that was reversed partially by 10 mM dithiothreitol. Immunoblot analysis showed that the recombinant Cx46 expressed in HeLa cells becomes carbonylated after exposure to 4-HNE, and that 10 mM dithiothreitol reduced its carbonylation. We also found that Cx46 was carbonylated by 4-HNE in the lens of a selenite-induced cataract animal model. The exposure to 100 μM 4-HNE decreased hemichannel currents formed by recombinant rat Cx46 in Xenopus laevis oocytes. This inhibition also occurred in a mutant expressing only the extracellular loop cysteines, suggesting that other Cys are not responsible for the hemichannel inhibition by carbonylation. This work demonstrates for the first time that Cx46 is post-translationally modified by a lipid peroxide and that this modification reduces Cx46 hemichannel activity.Item Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR-dependent transmission and short-term fear memory in the basolateral amygdala(2021) Linsambarth, Sergio; Carvajal, Francisco; Moraga, Rodrigo; Mendez, Luis; Tamburini, Giovanni; Jimenez, Ivanka; Verdugo, Daniel; Gómez, Gonzalo I; Jury, Nur; Martínez, Pablo; Van Zundert, Brigitte; Varela, Lorena; Retamal, Mauricio; Martin, Claire; Altenberg, Guillermo; Fiori, Mariana; Cerpa, Waldo; Orellana, Juan; Stehberg, JimmyAstrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.Item Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?(2017) Retamal, Mauricio A.; Riquelme, Manuel A; Stehberg, Jimmy; Alcayaga, JulioIn this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia). It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs). Recent evidence shows that connexin43 (Cx43) hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.Item Cx46 hemichannel modulation by nitric oxide: Role of the fourth transmembrane helix cysteine and its possible involvement in cataract formation.(2019) Retamal, Mauricio; Orellana, Viviana; Arévalo, Nicolás; Rojas, Cristóbal; Arjona, Rodolfo; Alcaíno, Constanza; González, Wendy; Canan, Jonathan; Moraga-Amaro, Rodrigo; Stehberg, Jimmy; Reuss, Luis; Altenberg, GuillermoUnder normal conditions, connexin (Cx) hemichannels have a low open probability, which can increase under pathological conditions. Since hemichannels are permeable to relatively large molecules, their exacerbated activity has been linked to cell damage. Cx46 is highly expressed in the lens and its mutations have been associated to cataract formation, but it is unknown whether Cx46 has a role in non-genetic cataract formation (i.e. aging and diabetes). Nitric oxide (NO) is a key element in non-genetic cataract formation and Cx46 hemichannels have been shown to be sensitive to NO. The molecular mechanisms of the effects of NO on Cx46 are unknown, but are likely to result from Cx46 S-nitrosation (also known as S-nitrosylation). In this work, we found that lens opacity was correlated with Cx46 S-nitrosation in an animal model of cataract. Consistent with this result, a NO donor increased Cx46 S-nitrosation and hemichannel opening in HLE-B3 cells (cell line derived from human lens epithelial cells). Mutagenesis studies point to the cysteine located in the fourth transmembrane helix (TM4; human C212, rat C218) as the NO sensor. Electrophysiological studies performed in Xenopus oocytes revealed that rat Cx46 hemichannels are sensitive to different NO donors, and that the presence of C218 is necessary to observe the NO donors' effects. Unexpectedly, gap junctions formed by Cx46 were insensitive to NO or the reducing agent dithiothreitol. We propose that increased hemichannel opening and/or changes in their electrophysiological properties of human Cx46 due to S-nitrosation of the cysteine in TM4 could be an important factor in cataract formation.Item Extracellular Cysteine in Connexins: Role as Redox Sensors(Lausanne : Frontiers Research Foundation, 2016) Retamal, Mauricio; García, Isaac; Pinto, Bernardo; Pupo, Amaury; Báez, David; Stehberg, Jimmy; Del Río, Rodrigo; González, CarlosConnexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.Item Extracellular Cysteines Are Critical to Form Functional Cx46 Hemichannels(2022) Fernández, Ainoa; Durán, Eduardo; Verdugo, Daniel; Fiori, Mariana; Altenberg, Guillermo; Stehberg, Jimmy; Alfaro, Iván; Calderón, Juan; Retamal, MauricioConnexin (Cxs) hemichannels participate in several physiological and pathological processes, but the molecular mechanisms that control their gating remain elusive. We aimed at determining the role of extracellular cysteines (Cys) in the gating and function of Cx46 hemichannels. We studied Cx46 and mutated all of its extracellular Cys to alanine (Ala) (one at a time) and studied the effects of the Cys mutations on Cx46 expression, localization, and hemichannel activity. Wild-type Cx46 and Cys mutants were expressed at comparable levels, with similar cellular localization. However, functional experiments showed that hemichannels formed by the Cys mutants did not open either in response to membrane depolarization or removal of extracellular divalent cations. Molecular-dynamics simulations showed that Cys mutants may show a possible alteration in the electrostatic potential of the hemichannel pore and an altered disposition of important residues that could contribute to the selectivity and voltage dependency in the hemichannels. Replacement of extracellular Cys resulted in "permanently closed hemichannels", which is congruent with the inhibition of the Cx46 hemichannel by lipid peroxides, through the oxidation of extracellular Cys. These results point to the modification of extracellular Cys as potential targets for the treatment of Cx46-hemichannel associated pathologies, such as cataracts and cancer, and may shed light into the gating mechanisms of other Cx hemichannels.Item GABAergic Regulation of Astroglial Gliotransmission through Cx43 Hemichannels(2022) Jiménez, Ivanka; Reyes, Rachel; Lemunao, Yordan; Cárdenas, Kevin; Castro, Raimundo; Peña, Francisca; Lucero, Claudia; Prieto, Juan; Retamal, Mauricio; Orellana, Juan; Stehberg, JimmyGamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.Publication KI04 an Aminoglycosides-Derived Molecule Acts as an Inhibitor of Human Connexin46 Hemichannels Expressed in HeLa Cells(2023) Chang, Cheng-Wei; Poudyal, Naveena; Peña, Francisca; Verdugo, Daniel; Stehberg, Jimmy; Retamal, Mauricio A.Background: Connexins (Cxs) are proteins that help cells to communicate with the extracellular media and with the cytoplasm of neighboring cells. Despite their importance in several human physiological and pathological conditions, their pharmacology is very poor. In the last decade, some molecules derived from aminoglycosides have been developed as inhibitors of Cxs hemichannels. However, these studies have been performed in E. coli, which is a very simple model. Therefore, our main goal is to test whether these molecules have similar effects in mammalian cells. Methods: We transfected HeLa cells with the human Cx46tGFP and characterized the effect of a kanamycin-derived molecule (KI04) on Cx46 hemichannel activity by time-lapse recordings, changes in phosphorylation by Western blot, localization by epifluorescence, and possible binding sites by molecular dynamics (MD). Results: We observed that kanamycin and KI04 were the most potent inhibitors of Cx46 hemichannels among several aminoglycosides, presenting an IC50 close to 10 μM. The inhibitory effect was not associated with changes in Cx46 electrophoretic mobility or its intracellular localization. Interestingly, 5 mM DTT did not reverse KI04 inhibition, but the KI04 effect completely disappeared after washing out KI04 from the recording media. MD analysis revealed two putative binding sites of KI04 in the Cx46 hemichannel. Results: These results demonstrate that KI04 could be used as a Cx46 inhibitor and could help to develop future selective Cx46 inhibitors.Item Over-activated hemichannels: A possible therapeutic target for human diseases(2021) Retamal, Mauricio; Fernández-Olivares, Ainoa; Stehberg, JimmyIn our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.Item Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: gap junctions versus hemichannels(Elsevier, 2013) Iyyathuraia, Jegan; D'hondt, Catheleyne; Wang, Nan; De Bock, Marijke; Himpens, Bernard; Retamal, Mauricio; Stehberg, Jimmy; Leybaert, Luc; Bultynck, GeertAbout a decade ago, the molecular determinants controlling the opening and closing of Cx43 gap junction channels have been identified. Advanced biophysical approaches revealed a critical role for structural rearrangements in the cytoplasmic loop and dimerization of the C-terminal tail, resulting in binding of the C-terminal tail to the cytoplasmic loop and Cx43 gap junction channel closure during cellular acidosis. This has spurred the development of Cx43-mimetic peptides and peptidomimetics that interfere with these loop/tail interactions, thereby preventing the closure of Cx43 gap junctions, e.g. in the heart upon ischemia. Recently, we found that loop/tail interactions control Cx43-hemichannel activity but with an opposite effect. Binding of the C-terminal tail to the cytoplasmic loop is a requisite for the opening of Cx43 hemichannels in response to different stimuli, like decreased extracellular [Ca2+], increased intracellular [Ca2+], positive membrane potentials or ischemia. Strikingly, peptides that favor the open state of Cx43 gap junctions like the L2 peptide inhibit Cx43-hemichannel opening. These tools now provide unprecedented opportunities to selectively inhibit Cx43 hemichannels while maintaining Cx43 gap junction communication, impossible to achieve with siRNA or knockdown approaches both affecting gap junctions and hemichannels. These tools not only are very helpful to unravel the role of Cx43 hemichannels in complex biological systems, but also hold therapeutic potential to counteract excessive Cx43-hemichannel activity like in ischemia/reperfusion in the brain and the heart or to prevent Cx43 hemichannel-mediated gliotransmitter release in the basal amygdala during memory consolidation in response to emotional events. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.Item Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala(Federation of American Societies for Experimental Biology, 2012) Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan; Retamal, MauricioRecent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.Item Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases(Lausanne, Switzerland : Frontiers Research Foundation, 2016) Orellana, Juan; Retamal, Mauricio; Moraga-Amaro, Rodrigo; Stehberg, JimmyUnder physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases.