Browsing by Author "Schneider, Letitia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Enhanced left superior parietal activation during successful speech production in patients with left dorsal striatal damage and error-prone neurotypical participants(2022) Geva, Sharon; Schneider, Letitia; Khan, Shamima; Lorca, Diego; Gajardo-Vidal, Andrea; PLORAS team; Green, David; Price, CathyFunctional imaging studies of neurotypical adults report activation in the left putamen during speech production. The current study asked how stroke survivors with left putamen damage are able to produce correct spoken responses during a range of speech production tasks. Using functional magnetic resonance imaging, activation during correct speech production responses was assessed in 5 stroke patients with circumscribed left dorsal striatal lesions, 66 stroke patient controls who did not have focal left dorsal striatal lesions, and 54 neurotypical adults. As a group, patients with left dorsal striatal damage (our patients of interest) showed higher activation than neurotypical controls in the left superior parietal cortex during successful speech production. This effect was not specific to patients with left dorsal striatal lesions as we observed enhanced activation in the same region in some patient controls and also in more error-prone neurotypical participants. Our results strongly suggest that enhanced left superior parietal activation supports speech production in diverse challenging circumstances, including those caused by stroke damage. They add to a growing body of literature indicating how upregulation within undamaged parts of the neural systems already recruited by neurotypical adults contributes to recovery after stroke.Item Right cerebral motor areas that support accurate speech production following damage to cerebellar speech areas(2021) Geva, Sharon; Schneider, Letitia; Roberts, Sophie; Khan, Shamima; Gajardo-Vidal, Andrea; Lorca, Diego; PLORAS team; Hope, Thomas; Green, David; Price, CathySpecific regions of the cerebellum are activated when neurologically intact adults speak, and cerebellar damage can impair speech production early after stroke, but how the brain supports accurate speech production years after cerebellar damage remains unknown. We investigated this in patients with cerebellar lesions affecting regions that are normally recruited during speech production. Functional MRI activation in these patients, measured during various single word production tasks, was compared to that of neurologically intact controls, and patient controls with lesions that spared the cerebellar speech production regions. Our analyses revealed that, during a range of speech production tasks, patients with damage to cerebellar speech production regions had greater activation in the right dorsal premotor cortex (r-PMd) and right supplementary motor area (r-SMA) compared to neurologically intact controls. The loci of increased activation in cerebral motor speech areas motivate future studies to delineate the functional contributions of different parts of the speech production network, and test whether non-invasive stimulation to r-PMd and r-SMA facilitates speech recovery after cerebellar stroke.