Browsing by Author "Schalper, Kurt A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer(2018) Altan, Mehmet; Kidwell, Kelley M.; Pelekanou, Vasiliki; Schalper, Kurt A.; Toki, María I.; Thomas, Dafydd G.; Sabel, Michael S.; Hayes, Daniel F.; Rimm, David L.; Carvajal-Hausdorf, DanielB7-H4 (VTCN1) is a member of the CD28/B7 family of immune co-inhibitory molecules. The relationship of tumor and stromal B7-H4 protein expression with PD-L1, tumor infiltrating lymphocytes (TILs) and its association with clinico-pathological variables are not well defined. Herein, we explore the expression level of B7-H4 protein in breast cancer and evaluate its association with TILs, levels of PD-L1 expression, and clinico-pathological characteristics in two independent populations. In this study, we used multiplexed automated quantitative immunofluorescence (QIF) to measure the levels of B7-H4 and PD-L1 protein and determined TILs through pathologist assessment of H&E-stained preparations in over a thousand breast cancer cases from two institutions represented in tissue microarray format. Associations between the marker levels, major clinico-pathological variables, and survival were analyzed. We detected B7-H4 protein was highly expressed in both breast cancer and stromal cells. Its expression was independent of breast cancer intrinsic subtypes. PD-L1 expression was higher in triple negative breast cancers. Neither B7-H4 nor PD-L1 were associated with survival in breast cancer. Our study shows there is a mutually exclusive pattern of B7-H4 with both tumor PD-L1 expression and TILs in all breast cancers, independent of breast cancer intrinsic subtype. This exclusive pattern suggests that some breast tumors may preferentially use one B7-related immune evasion mechanism/pathway. This could explain the clinical benefit that is seen only in a fraction of patients with immune checkpoint inhibitors directed exclusively towards PD-L1 in breast cancer.Item Cell membrane permeabilization via connexin hemichannels in living and dying cells(2010) Sáez, Juan C.; Schalper, Kurt A.; Retamal, Mauricio A.; Orellana, Juan A.; Shoji, Kenji F.; Bennett, Michael V.LVertebrate cells that express connexins likely express connexin hemichannels (Cx HCs) at their surface. In diverse cell types, surface Cx HCs can open to serve as a diffusional exchange pathway for ions and small molecules across the cell membrane. Most cells, if not all, also express pannexins that form hemichannels and increase the cell membrane permeability but are not addressed in this review. To date, most characterizations of Cx HCs have utilized cultured cells under resting conditions have and revealed low open probability and unitary conductance close to double that of the corresponding gap junction channels. In addition, the cell membrane permeability through Cx HCs can be markedly affected within seconds to minutes by various changes in the intra and/or extracellular microenvironment (i.e., pH, pCa, redox state, transmembrane voltage and intracellular regulatory proteins) that affect levels, open probability and/or (single channel) permeability of Cx HC. Net increase or decrease in membrane permeability could result from the simultaneous interaction of different mechanisms that affect hemichannels. The permeability of Cx HCs is controlled by complex signaling cascades showing connexin, cell and cell stage dependency. Changes in membrane permeability via hemichannels can have positive consequences in some cells (mainly in healthy cells), whereas in others (mainly in cells affected by acquired and/or genetic diseases) hemichannel activation can be detrimental.Item Modulation of gap junction channels and hemichannels by growth factors(2012) Schalper, Kurt A.; Riquelme, Manuel A.; Martínez, Agustín D.; Vega, José Luis; Berthoud, Viviana M.; Bennett, Michael V. L.; Sáez, Juan C.; Brañez, María C.Gap junction hemichannels and cell–cell channels have roles in coordinating numerous cellular processes, due to their permeability to extra and intracellular signaling molecules. Another mechanism of cellular coordination is provided by a vast array of growth factors that interact with relatively selective cell membrane receptors. These receptors can affect cellular transduction pathways, including alteration of intracellular concentration of free Ca2+ and free radicals and activation of protein kinases or phosphatases. Connexin and pannexin based channels constitute recently described targets of growth factor signal transduction pathways, but little is known regarding the effects of growth factor signaling on pannexin based channels. The effects of growth factors on these two channel types seem to depend on the cell type, cell stage and connexin and pannexin isoform expressed. The functional state of hemichannels and gap junction channels are affected in opposite directions by FGF-1 via protein kinase-dependent mechanisms. These changes are largely explained by channels insertion in or withdrawal from the cell membrane, but changes in open probability might also occur due to changes in phosphorylation and redox state of channel subunits. The functional consequence of variation in cell–cell communication via these membrane channels is implicated in disease as well as normal cellular responses.