Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • English
  • Español
  • Português do Brasil
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Samei, Ehsan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Variability of quantitative measurements of metastatic liver lesions: a multi‑radiation‑dose‑level and multi‑reader comparison
    (2020) Ding, Yuqin; Marin, Daniele; Vernuccio, Federica; Gonzalez, Fernando; Williamson, Hannah V.; Becker, Hans‑Christoph; Patel, Bhavik N.; Solomon, Justin; Ramirez‑Giraldo, Juan Carlos; Samei, Ehsan; Nelson, Rendon C.; Meyer, Mathias
    Purpose To evaluate the variability of quantitative measurements of metastatic liver lesions by using a multi-radiation-doselevel and multi-reader comparison. Methods Twenty-three study subjects (mean age, 60 years) with 39 liver lesions who underwent a single-energy dual-source contrast-enhanced staging CT between June 2015 and December 2015 were included. CT data were reconstructed with seven different radiation dose levels (ranging from 25 to 100%) on the basis of a single CT acquisition. Four radiologists independently performed manual tumor measurements and two radiologists performed semi-automated tumor measurements. Interobserver, intraobserver, and interdose sources of variability for longest diameter and volumetric measurements were estimated and compared using Wilcoxon rank-sum tests and intraclass correlation coefficients. Results Inter- and intraobserver variabilities for manual measurements of the longest diameter were higher compared to semi-automated measurements (p < 0.001 for overall). Inter- and intraobserver variabilities of volume measurements were higher compared to the longest diameter measurement (p < 0.001 for overall). Quantitative measurements were statistically different at < 50% radiation dose levels for semi-automated measurements of the longest diameter, and at 25% radiation dose level for volumetric measurements. The variability related to radiation dose was not significantly different from the inter- and intraobserver variability for the measurements of the longest diameter. Conclusion The variability related to radiation dose is comparable to the inter- and intraobserver variability for measurements of the longest diameter. Caution should be warranted in reducing radiation dose level below 50% of a conventional CT protocol due to the potentially detrimental impact on the assessment of lesion response in the liver.
  • Loading...
    Thumbnail Image
    Item
    Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization
    (RSNA, 2019-05) Meyer, Mathias; Nelson, Rendon; Vernuccio, Federica; González, Fernando; Farjat, Alfredo; Patel, Bhavik; Samei, Ehsan; Henzler, Thomas; Schoenberg, Stefan; Marin, Daniele
    Background Dual-energy (DE) CT allows reconstruction of virtual noncontrast (VNC) images from a single-phase contrast agent-enhanced examination, potentially reducing the need for multiphasic CT to characterize renal lesions. However, data regarding diagnostic performance of VNC images for the characterization of renal lesions are limited. Purpose To determine whether renal mass CT performed by using VNC images allows for reliable identification of renal lesions and differentiation of contrast-enhanced from unenhanced lesions, compared with unenhanced images. Materials and Methods This is a retrospective study of 293 patients (105 women [mean age, 65 years; age range, 18-91 years] and 188 men [mean age, 66 years; age range, 23-90 years] with 379 renal lesions [craniocaudal diameter, 1.0-4.0 cm]) who underwent a single-energy unenhanced CT examination followed by a nephrographic-phase DE CT between June 2013 and October 2017 by using one of four different DE CT platforms from two vendors. VNC images were calculated by using vendor-specific algorithms. Each lesion was classified in a blinded and independent fashion by using the VNC or unenhanced image in combination with the nephrographic images. Attenuation measurements were obtained on the VNC, unenhanced, and nephrographic images. Unenhanced images and pathologic or imaging follow-up for more than 24 months served as reference standard. Results There was strong overall agreement between VNC and unenhanced images for renal lesion characterization (Cramer V = 0.85). VNC images yielded a high diagnostic performance (area under the receiver operating characteristic curve, 0.91; 95% confidence interval: 0.86, 0.95) for facilitation of differentiation of contrast-enhanced from unenhanced renal lesions. However, there was a reduction in diagnostic performance for depicting contrast-enhanced renal lesions by using VNC compared with unenhanced images (area under the receiver operating characteristic curve, 0.91 [95% confidence interval: 0.86, 0.95] vs 0.96 [95% confidence interval: 0.93, 0.99]; P < .001). Mean absolute difference between the VNC and unenhanced attenuation was 9.2 HU ± 8.7. Conclusion Virtual noncontrast images enabled accurate renal lesion characterization, albeit with a reduction in diagnostic performance for contrast-enhanced lesion characterization.

Santiago

Av. La Plaza Nº 680, Las Condes

Concepción

Ainavillo Nº 456, Concepción

Logo Universidad del Desarrollo

Implementado por OpenGeek Services